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Topics of this talk
◦ Motivation: why do we need a scattering theory for ultracold atoms?

▶ Physics of the interaction of a quantum gas.
◦ Recap of fundamentals of two-body scattering theory.

▶ Basic definitions.
▶ Low-energy scattering, scattering length.
▶ Scattering of identical particles.

◦ Measurement of the interaction properties of quantum gases, universality.
◦ More concepts from scattering theory

▶ Partial wave expansion.
▶ T-matrix formalism and Lippman-Schwinger equation.
▶ Effective potentials.

◦ Effective field theory using effective range correction.
▶ Modified Gross-Pitaevskii equation.
▶ On-shell approximation.

◦ Multi-channel scattering
▶ Open, closed channels.
▶ Feshbach resonances.
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Interactions in a quantum gases
◦ In cold atomic gases the interparticle spacing is typically in the order of ∼ 102 nm, an order of

magnitude larger than length scale of the interaction.
◦ It follows that two body interactions dominate with respect to three and higher number of

particles interaction.
◦ Moreover, the atoms have a rich hyperfine structure. In a general scattering process, we have the

quantum numbers (may refer to spin, atomic species, state of excitation) of the incoming and
outgoing states, that may be different. A possible choice of quanutum numbers is called a channel.

◦ At typical temperatures for Bose-Einstein condensation, atoms are at the electronic ground state,
so the only relevant degree of freedom is represented by the hyperfine states. The change of states
may induce trap loss.

◦ It is not in general possible to make very precise theoretical calculation for the shape of the
potentials, so an interplay of measurements and effective theories.

Typical model potentials have the shape

V (r) = −C6

r6 −
C8

r8 −
C10

r10

estimates on the coefficients can be derived using van der Waals model for the interaction.
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Recap of basic theory of two-body scattering
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Two-body problem I

Let us consider a three-dimensional motion of two distinguishable particles of the same mass m in a
unitary volume, in presence of an interaction potential depending only on the distance between the
particles. We consider a scattering event in which the internal degrees of freedom play no role. This is
called a single-channel scattering. The relative motion is described by

Ĥ = Ĥ0 + V̂ ,

where Ĥ0 = p̂2/(2mr) , mr = m/2 reduced mass. We have a scattered wavefunction expressed as

ψ(r) = eik·r + ψsc(r), (1)

at large distances, the scattered wave is a spherical wave in the form

ψsc(r) ≈ f(θ, k)e
ikr

r
,
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Two-body problem II
where θ is the angle between k and r′, and k the magnitude of k. The function f is called scattering
amplitude. The scattering is elastic, and its energy is

E = ℏ2k2

2mr
.

The simplest definition of the scattering length a is obtained taking the limit of the wavefunction for
k → 0. Moreover, the dependence of f(θ, k) on θ will be throught the function cos(θ) for axial
symmetry. In this limit the wavefunction is isotropic, so we expect to have a constant f(θ) =: −a,

ψ(r) ≈ 1− a

r
. (2)

The ratio of the scattered current of probability per unit solid angle to the incoming wave current of
probability per unit area is the differential cross section, which in the case of a incoming plane wave is

dσ
dΩ = |f(θ, k)|2,

integrating over the whole solid angle we get the total cross section. In the limit of k → 0, we have

σ = 4πa2.
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Scattering of identical particles
In the case of identical particles it is necessary to have symmetric or antisymmetric total wavefunctions
with respect to the exchange of the particles. Let k be aligned with the z axis. Then the total
wavefunction state reads

ψ(r) = eikz + f(θ, k)e
ikr

r
. (3)

Exchanging the particles is equivalent to change the system of reference such that

z → −z, (4)
θ → π − θ, (5)

so symmetrized/antisymmetrized wavefunction is

ψ(r) = eikz + ζe−ikz + [f(θ, k) + ζf(π − θ, k)] e
ikr

r
, (6)

where ζ = 1 for bosons, ζ = −1 for fermions. The corresponding cross section gets modified
accordingly:

σ = 8πa2, (7)

for bosons, σ = 0 for Fermions.
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Measurement of scattering parameters I

In order to measure the scattering parameters, experiments employ the following techniques
◦ Indirect measure of collision cross-section:

Working above TC , in a semiclassical framework, use kinetic theory of gas to relate damping of
oscillations to scattering cross section - require knowledge of particle density.

◦ Photoassociation spectroscopy:
Measures the rate at which two interacting ground-state atoms in an unbound state are excited by
means of a laser to a molecular state in which one of the atoms is in a P state.

Scattering theory for ultracold atoms 8 / 39



Measurement of scattering parameters II
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More concepts from scattering theory
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Partial wave expansion I
The wavefunction can be expanded in partial waves

ψ(r) =
∞∑

l=0
AlPl(cos(θ))Rkl(r), (8)

where Rkl(r) solves the radial Schrödinger equation

R′′
kl(r) + 2

r
R′

kl(r) +
[
k2 − l(l + 1)

r2 − 2m
ℏ2 V (r)

]
Rkl(r) = 0, (9)

the asymptotic solution reads

Rkl ∼
1
kr

sin
(
kr − π

2 l + δl

)
for r →∞, (10)

where δl is the l-wave phase shift. Using orthogonality of Legendre polynomials, a similar decomposition
is obtained for the scattering amplitude:

f(θ, k) = 1
2ik

∞∑
l=0

(2l + 1)(ei2δl − 1)Pl(cos θ) =
∞∑

l=0
(2l + 1)fl(k)Pl(cos(θ)), (11)
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Partial wave expansion II
a simple calculation link the function fl(k) leads to the phase shift

fl(k) = ei2δl − 1
2ik = 1

k cot(δl)− ik
. (12)

We can take advantage of the partial wave expansion, and write the total scattering cross-section as

σ = 2π
∫ 1

−1
d(cos(θ))|f(θ, k)|2 = 4π

k2

∞∑
l=0

(2l + 1) sin2(δl). (13)

Using this expression the As a general rule, for a potential decaying as r−n at large distances, for every
l < (n− 3)/2 it holds

δl ∼ k2l+1 for k → 0. (14)

So, for low energy scattering we obtain that the dominant term in the scattering amplitude is l = 0.
Considering Rk0, from trigonometry we have

Rk0 ∼ c1
sin(kr)
kr

+ c2
cos(kr)

r
for r →∞, (15)
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Partial wave expansion III

with the condition
tan(δ0) = kc2

c1
. (16)

Remember the limit expression ψ(r) = 1− a/r: neglecting all the contributions except for the s-wave
component, we match the expressions and obtain k → 0,

a = lim
k→0

(
− tan(δ0)

k

)
. (17)

Keeping only s-wave scattering, we have

σ = 4π
k2 δ

2
0 = 4πa2. (18)

Scattering theory for ultracold atoms 13 / 39



T-matrix formalism I
In principle it is possible to derive the δl directly from the Schrödinger equation. We show an alternative
formalism that allow to obtain useful simplification with respect to this approach. Consider the initial
state |ϕ⟩, an eigenstate of the free Hamiltonian

Ĥ0 |ϕ⟩ = E |ϕ⟩ , (19)

and a final state |ψ⟩, eigenstate of the total Hamiltonian, in elastic scattering

(Ĥ0 + V̂ ) |ψ⟩ = E |ψ⟩ , (20)

so it holds, manipulating the expression

(E − Ĥ0) |ψ⟩ = V̂ |ψ⟩+ (E − Ĥ0) |ϕ⟩ . (21)

Being the operator Ĝ0 = (E − Ĥ0)−1 singular, we specify two class of scattered solutions, |ψ±⟩, by
defining Ĝ±

0 = (E − Ĥ0 ± iε)−1 for a small, real ε∣∣ψ±〉
= V̂ |ϕ⟩+ Ĝ±

0 V̂
∣∣ψ±〉

. (22)
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T-matrix formalism II
The scattered states correspond to keeping the outgoing (+) or incoming (-) spherical waves. The
above expression is meant to be evaluated keeping the limit ε→ 0, and it is frequently called the
Lippman-Schwinger equation (in coordinate-free representation). Let the wavevectors of the states |ϕ⟩
and |ϕ′⟩ be, respectively, k, k′. We can identify the scattering amplitude

f(k′,k) = − m

4πℏ2 ⟨ϕ
′| V̂

∣∣ψ+〉
, (23)

with θ the angle between the wavevectors of plane wave states |ϕ′⟩ (used as a projection) and |ϕ⟩.
Consider only the outgoing wave solution. We define the transmission (T-)matrix,

T̂ |ϕ⟩ = V̂
∣∣ψ+〉

, (24)

whose main advantage is in the writing of

f(k′,k) = − m

4πℏ2 ⟨ϕ
′| T̂ |ϕ⟩ . (25)

Then we can also write
f(k′,k) = − m

4πℏ2Tk′k, (26)
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T-matrix formalism III
where Tk′k = ⟨ϕ′| T̂ |ϕ⟩.
In addition, we have

T̂ |ϕ⟩ = V̂ |ϕ⟩+ V̂ Ĝ+
0 T̂ |ϕ⟩ , (27)

since it holds for every |ϕ⟩, this equation holds in an operatorial sense

T̂ = V̂ + V̂ Ĝ+
0 T̂ . (28)

The Born series is the expansion of the above equation

T̂ = V̂ + V̂ Ĝ+
0 V̂ + V̂ (Ĝ+

0 V̂ )2 + .... (29)

A fundamental approximation can be imposed keeping only the first term. This is the Born
approximation

T̂ ≈ V̂ (30)

In the Born approximation, the scattering length can be expressed readily from the potential, in the
limit k → 0

a = m

4πℏ2

∫
d3r V (r). (31)
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Effective potential I

In the low wavelength limit, scattering is dominated by the s-wave interaction . So we can substitute
the potential with an effective one that reproduces the correct scattering length. One example, very
useful in the calculations, is

Veff(r) = g0δ
(3)(r). (32)

We only need to match
V0 =

∫
d3rV (r), (33)

so to obtain the fundamental relation
V0 = 4πℏ2

m
a. (34)

But it is possible to make more precise calculations. In fact, the s-wave phase shift can be expanded into

k cot(δ0) = −1
a

+ 1
2rk

2, (35)
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Effective potential II

in which the effective range r is defined. In an analogous way, we can take an expansion to the second
order of the potential in momentum space

V (k) = g0 + g2k
2. (36)

We characterize the relation between g0, g2 and a, r later on. We just notice that this kind of potential
corresponds to a real space potential including delta functions and derivatives of delta functions.
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Effective range correction

f(θ, k) = 1
k cot(δ0)− ik ,

k cot(δ0) = −1
a

+ 1
2r k

2.
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Modified Gross-Pitaevskii equation I

Now consider how one can include the improved potential into the Gross-Pitaevskii equation. The
spatial representation of the potential Veff(k) = g0 + g2k

2 in the relative motion frame is

Veff(r) = g0δ
(3)(r) + g2

2

(←−
∇2δ(3)(r) + δ(3)(r)−→∇2

)
So we can directly insert this term into the action functional in Hartree approximation, in the presence
of a trap potential Vtrap. We have seen that, for a generic potential,

S = N

∫
dtd3r ψ(r, t)∗

[
iℏ
∂

∂t
+ ℏ2

2m∇
2 − Vtrap(r)− N − 1

2

∫
d3r′ |ψ(r′)|2V (r′ − r)

]
ψ(r, t). (37)

This action is in general nonlocal. By substituting the effective potential, dropping the variables of the
wavefunction

S = N

∫
dtd3r ψ∗

[
iℏ
∂

∂t
+ ℏ2

2m∇
2 − Vtrap −

N − 1
2

(
g0|ψ|2 + g2

2 ∇
2|ψ|2

)]
ψ.
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Modified Gross-Pitaevskii equation II
We can write the respective Euler-Lagrange equation, called Modified Gross-Pitaevskii equation

iℏ
∂

∂t
ψ =

[
− ℏ2

2m∇
2 + Vtrap + g0(N − 1)|ψ|2 + g2

2 (N − 1)∇2|ψ|2
]
ψ. (38)

F. Sgarlata et al. J. Phys. B: At. Mol. Opt. Phys. 48 115301 (2015).
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On-shell approximation

The Lippman-Schwinger equation in the momentum space can be written explicitly

Tkk′ = Vkk′ +
∫
dDk′′ Vkk′′

ℏ2k2

2mr
− ℏ2(k′′)2

2mr
+ i ε

Tk′′k′ .

We use a generalized partial wave expansion on the equation, and

Vkk′ = 1
(2π)D

∑
l

Vl(k, k′)N(D, l)Pl(k̂ · k̂′).

We consider only the (generalized) s-wave component

T0(k) = V0(k) + V0(k) C(k) T0(k),

with
C(k) = SD

∫ ∞

0

dk′′

(2π)D

1
ℏ2k2

m − ℏ2(k′′)2

m + iε
.
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Dimensional regularization I
The integral for C(k) can be calculated using dimensional regularization

C(k) = − SD

(2π)D

m

ℏ2

∫ ∞

0
dk′′(k′′)D−1 1

(k′′)2 + (−ik)2 = −m
ℏ2 (−ik)D−2B(D/2, 1−D/2)

(4π)D/2Γ(D/2)
,

being B the Euler beta function, that has an integral representation for positive x, y:

B(x, y) =
∫ +∞

0
dt

tx−1

(1 + t)x+y
,

we know that an alternative expression for the beta function is in terms of the gamma function, i.e.

B(x, y) = Γ(x)Γ(y)
Γ(x+ y) . (39)

This allows us to express the beta function even outside the domain ov validity of the integral
representation. Using the above equation,

C(k) = −m
ℏ2 (−ik)D−2 Γ(1−D/2)

(4π)D/2 .
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Dimensional regularization II
In fact, for D = 2, we have the divergent value Γ(0). The technique is to use a non-integer dimension
D = 2− ϵ and let ϵ go to zero only at the end of the calculation. So we start from

C(k) = −m
ℏ2κ

ϵ
0(−ik)−ϵ Γ(ϵ/2)

(4π)1−ϵ/2 , (40)

where the regulator κ0 is a scale wavenumber. The small-ϵ expansion of the gamma function reads

Γ(ϵ/2) = 2
ϵ
− γ +O(ϵ) , (41)

where γ ≃ 0.5572 is the Euler-Mascheroni constant. Taking into account that

xϵ = eln(xϵ) = eϵ ln(x) = 1 + ln(x)ϵ+O(ϵ2),

and ln(−i) = −iπ/2, one gets, after manually removing the remaining singularity

C(k) = m

2πℏ2 ln
(
k

2
eγ/2

Λ

)
− m

4ℏ2 i , (42)

setting Λ =
√
πκ0, which plays the role of a ultraviolet cutoff.
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Results I

Using the regularized C(k), we obtain a systematic link between scattering parameters and the
interaction potential expansion, as reported, by connecting our analysis to the values of the scattering
amplitudes in all dimensions.

D C(k) g∗
0 = g0 g∗

2 = 2g2

3 −ik m
4πℏ2

4πℏ2

m as
2πℏ2

m a2
srs

2 m
2πℏ2 ln

(
k
2

eγ/2

Λ

)
− m

4ℏ2 i − 4πℏ2

m
1

ln(Λ2a2
seγ )

2π2ℏ2

m
r2

s

ln2(Λ2a2
seγ )

1 −i 1
k

m
2ℏ2 − 2ℏ2

mas
−ℏ2

m rs
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Results II

μ
0.0 0.1 0.2 0.3

P(
μ
)

0.0

0.2

0.4

0.6

0.8
rs = 0
rs = 0.81as

rs = 1.80as

preprint: F. Lorenzi, A. Bardin, L. Salasinch, arXiv 2303.02675 (2023).
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Multi-channel scattering
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Multi-channel scattering I

Consider two alkali atoms, with nuclear spins I1 and I2. Since S = 1/2, we have a total of
4(2I1 + 1)(2I2 + 1) hyperfine states. The scattering event can couple those states together. In a
general setting, the Hamiltonian of the system, in the relative motion frame, is

Ĥ = Ĥ0 + V̂ , (43)

where
Ĥ0 = p̂2

2mr
+ Ĥspin,1 + Ĥspin,2, (44)

let greek letter states denote eigenstates of spin Hamiltonians

Ĥspin |α⟩ = ϵα |α⟩ .

Energy eigenstates are denoted by

Eαβ(kαβ) =
ℏ2k2

αβ

2mr
+ ϵα + ϵβ .
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Multi-channel scattering II

We use the asymptotic expansion of the wavefunction

ψ(r) = eikαβ ·r |αβ⟩+
∑
α′β′

fα′β′

αβ (kαβ ,k′
α′β′)

e−k′
α′β′ r

r
|α′β′⟩ , (45)

the incoming spin state is called the entrance channel, and the outgoing one exit channel. Since the
channels have different spin energies, the wavenumbers must satisfy

ℏ2k′2
α′β′

2mr
=

ℏ2k2
αβ

2mr
+ ϵα + ϵβ − ϵα′ − ϵβ′ ,

if this imply that k′2
α′β′ ≤ 0 the channel is called closed channel. We define also the threshold energy

Eth (α′β′) = ϵα′ + ϵβ′ . (46)
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Feshbach resonance I

Consider the space of all states to be divided into P , the subspace of open channels, and Q the
subspace of closed channels. Then a generic wavefunction is

|ψ⟩ = |ψP ⟩+ |ψQ⟩ .

Consider P and Q the projectors onto the respective subspaces. Let us multiply the Schrödinger
equation

Ĥ |ψ⟩ = E |ψ⟩ ,

by projectors

(E − ĤP P ) |ψP ⟩ = ĤP Q |ψQ⟩

(E − ĤQQ) |ψQ⟩ = ĤQP |ψP ⟩ ,

using the usual prescription for iε, solving formally the second equation

|ψQ⟩ = (E − ĤQQ + iε)−1ĤQP |ψP ⟩ ,
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Feshbach resonance II

and substituting into the first one

(E − ĤP P − Ĥ ′
P P ) |ψP ⟩ = 0,

where
Ĥ ′

P P = ĤP Q(E − ĤQQ + iε)−1ĤQP .

Let
ĤP P = Ĥ0 + V̂1,

where V̂1 is the potential in the open channel. We can rewrite the equation for |ψP ⟩ in a more physical
way

(E − Ĥ0 − V̂ ) |ψP ⟩ = 0,

where we have defined the effective interaction operator in the subspace of open channels as

V̂ = V̂1 + V̂2,
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Feshbach resonance III

and the additional interaction due to the coupling to the closed channel

V̂2 = Ĥ ′
P P ,

Consider the T-matrix equaition T̂ = V̂ + V̂ Ĝ+
0 T̂ , with formal solution

T̂ = V̂ (1− V̂ Ĝ+
0 )−1 = (1− Ĝ+

0 V̂ )−1V̂ . (47)

We can simplify to
T̂ = (E − Ĥ0 + iε)(E − Ĥ0 − V̂ + iε)−1V̂ . (48)

Define B̂ = V̂2, Â = E − Ĥ0 − V̂1 + iε. Then

T̂ = (E − Ĥ0 + iε)(Â− B̂)−1V̂ , (49)

now consider the operator identity

(Â− B̂)−1 = Â−1(1 + B̂(Â− B̂)−1). (50)
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Feshbach resonance IV
We get a modified equation for the total T-matrix

T̂ = T̂1 + (1− V̂1Ĝ
+
0 )−1V̂2(1− Ĝ+

0 V̂ )−1 (51)
T̂1 = V̂1 + V̂1Ĝ

+
0 T̂ . (52)

Let us take matrix elements using the plane wave states |k⟩ and |k′⟩. Suppressing channel indexes in
the T-matrix elements, we write

Tk′k = T1,k′k + ⟨k′| (1− V̂1Ĝ
+
0 )−1V̂2(1− Ĝ+

0 V̂ )−1 |k⟩ , (53)

one can notice that the state (1− Ĝ+
0 V̂ )−1 |k⟩ is an eigenstate of Ĥ0 + V̂ . We may denonte this state

with
∣∣∣k; V̂ ,+

〉
In a similar way, using

⟨k′| (1− V̂1Ĝ
+
0 )−1 = [(1− Ĝ−

0 V̂1)−1 |k′⟩]†,

we have the right state represented by an incoming wave. These states are no more plane waves, but
they are transformed by the interactions. We can also approximate V̂ inside the second term with V̂1,
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Feshbach resonance V

thus calculating the first order correction in V̂2. Finally, let us go to the limit k → 0. We can define aP

as the scattering length in the P space, and using |ψn⟩ eigenstates of ĤQQ, we obtain, from the full
expression of V̂2,

V̂2 = Ĥ ′
P P = ĤP Q(E − ĤQQ + iε)−1ĤQP ,

the relation
4πℏ2

m
a = 4πℏ2

m
aP +

∑
n

| ⟨ψn| ĤQP |ψ0⟩ |2

Eth − En
, (54)

the nonresonant terms into the are almost constant with energy, so we incorporate all terms into
consider only the resonant state

4πℏ2

m
a = 4πℏ2

m
abg + | ⟨ψres| ĤQP |ψ0⟩ |2

Eth − Eres
, (55)

Eth − Eres ≈ (µres − µα − µβ)(B −B0), (56)
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Feshbach resonance VI

and we recollect the usual formula for Feshbach resonance

a(B) = abg

(
1− ∆B

B −B0

)
. (57)

with

∆B = m

4πℏ2abg

| ⟨ψres| ĤQP |ψ0⟩ |2

µres − µα − µβ
.
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Feshbach resonance VII

S. Inouye et. al, Nature 392, 151–154 (1998).
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Additional material
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Boltzmann transport equation

Suppose we are at T > TC , and kT >> ∆E, the level spacing of the trap potential. Suppose also to
neglect the mean-field potential since kT >> nU0. Then we can use a semiclassical distribution of
states f , obeying the Bolzmann equation.

∂f

∂t
+ ṙ · ∂f

∂r + ṗ · ∂f
∂p =

(
∂f

∂t

)
source

(58)

The source term is given by the interactions, in particular it depends on the scattering cross section
σ = 8πa2, and uses the principle of detailed balance (assuming only s-wave interaction). By linearizing
the equation, we get damping of the oscillation modes imposed by the interaction.
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Hyperfine and Zeeman Hamiltonian

Ĥspin = AI · J + CJz +DIz
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