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Summary: solitons of ultracold Cesium in a optical lattice

Platform. Cesium BEC in an optical accordion lattice with tunable spacing 𝑑L and depth 𝑉0.

Protocol. Prepare a wave packet over selected sites, quench 𝑎𝑠 < 0, remove axial trap to form single-site (SS) andmulti-site

(MS) solitons.

▶ Cs BEC in a crossed dipole trap; interactions tuned via a broad Feshbach resonance with a zero crossing near 17.1G.
▶ Transfer to a 780 nm accordion lattice and select 1–3 sites via microwave transfer and resonant light.
▶ Typical preparation: 𝑁 ∼ 3 × 104 before selection, 𝑁 ≲ 3 × 103 after selection.
▶ Quench 𝑎𝑠 and release the axial trap in ∼ 2ms to trigger soliton formation.
▶ Image after evolution using a magnification ramp: increase 𝑉0 and expand 𝑑L to resolve site occupations.

Key results

▶ Stable SS window near 𝑎𝑠 ≈ −8𝑎0.
▶ MS solitons persist for 100–250ms.
▶ Variational theory matches stability trends.
▶ 3D-GPE with loss captures collapse thresholds and

reproduces atom-number dynamics.

Overview of the experimental conditions

Figure 1. Trap and lattice geometry (left) and quench protocol (right). (From Ref. [2])
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▶ 𝑑L = 3.2(2) μm (prep)
▶ 𝑉0 ≈ 100𝐸𝑟 (selection)
▶ 𝑁 ≈ 1800 (SS)

▶ 𝑁 ≈ 2900 (MS)
▶ 𝜔⊥ ≈ 2𝜋 × (25–40)Hz
▶ 𝑡 up to 250ms (MS), 2 s (SS)

Site occupations 𝑁 𝑗 are extracted from absorption images after the magnification sequence.
▶ SS measurement: central-site fraction 𝑁𝑐/𝑁tot tracks localization and identifies stable windows.
▶ MS measurement: width𝑤𝑚 quantifies dispersion rates and stability over 100–250ms.
▶ Stability test: compare measured dynamics with variational barriers 𝐸𝑆𝑆, 𝐸𝑀𝑆 and 3D-GPE.
▶ Loss dynamics: early-time three-body loss reduces 𝑁 , then slows as the packet expands.

Variational model and stability

We use a Gaussian variational ansatz to derive an effective energy function for SS/MS stability.
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Gaussian ansatz is parametrized by 𝜂 (axial lenght) and 𝜎 (transverse length):
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Minimizing over 𝜎 gives 𝐸 (𝜂) with SS/MS minima and barriers 𝐵𝑆𝑆, 𝐵𝑀𝑆 .

▶ Interaction parameter 𝑔 = 2𝑎𝑠𝑁 /𝑎⊥, lattice depth 𝑉0 and lattice wave number 𝑘𝐿 = 𝜋/𝑑L enter the
energy landscape. Predicts stability regions that guide experimental scans of 𝑎𝑠 , 𝑉0, and 𝑑L.

Figure 2. Variational stability map versus (𝑔,𝑉0, 𝑑L).

Single-site solitary waves

Three regimes appear: stable SS, dispersion near 𝑎𝑠 ≈0, and collapse for strong attraction. For 𝑎𝑠 ≈ −8𝑎0
the wave packet stays localized for up to ∼ 2 s, while 𝑎𝑠 ≲ −10𝑎0 leads to collapse.

Figure 3. Stability of single-site solitons: density profiles and central-site fraction versus 𝑎𝑠 , 𝑉0, and 𝑑L.

A stable SS window appears around 𝑎𝑠 ≈ −8𝑎0, while repulsive interactions produce self-trapping at
large 𝑉0.

Multi-site solitary waves

Multi-site packets are prepared from three adjacent sites and sets to a 3–5 site distribution. We track the
width𝑤𝑚 and site occupations over 100–250ms after the quench. For 𝑎𝑠 ≈ +2.0𝑎0 the packet disperses,
while for 𝑎𝑠 ≈ −5.7𝑎0 it remains localized and soliton-like. Early-time atom loss is dominated by three-
body recombination in high-density regions; subsequent loss slows as the packet expands.

Figure 4. Time evolution and stability of MS solitons (left). Simulations with the 3D-GPE (right).

Comparison with Gross-Pitaevskii theory: collapse prevented by losses
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Mean-field dynamics with contact interactions 𝑔 = 2𝑎𝑠𝑁 /𝑎⊥ and an effective three-body loss term 𝑔5.
The density loss is parametrized by one-, two-, and three-body processes: three-body loss is dominant
in the experimental conditions
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We use 𝐿3 = 5 × 10−39–5 × 10−38m6 s−1 and 𝑉 (𝑥,𝑦, 𝑧) = 𝜔2
𝑧𝑚𝑧2/2 + 𝜔2
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compare data with 3D-GPE using these interaction and loss parameters; it captures the collapse/disper-
sion boundary and the measured dynamics of 𝑤𝑚 and atom number. Calculations show two regimes:
rapid density increase with strong loss for large negative 𝑎𝑠 , and slow dispersion for weaker attraction.

Figure 5. Collapse of multi-site wave packets: 𝑤𝑚 vs 𝑎𝑠 with 3D-GPE band (left) and transverse distribution from the
numerical solution over the dynamics in the strongly attractive case (right).

Remarks and future directions

▶ Reduced models (NPSE and 1D GPE limits) offer a compact description of 3D dynamics;
systematic benchmarks across (𝑎𝑠,𝑉0, 𝑑L) can map their validity.

▶ Full 3D-GPE simulations (code in Rust and Python is available:

https://github.com/lorenzifrancesco/rust-waves )
can already be used as a benchmark.

▶ The barrier picture provides rules for stability/decay; extending it with reduced models can guide
fast parameter scans.

▶ Beyond SS/MS bright solitons, lattice gap solitons near band edges and repulsive-interaction
self-trapped states may be investigated.
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