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SUMMARY: SOLITONS OF ULTRACOLD CESIUM IN A OPTICAL LATTICE

Platform. Cesium BEC in an optical accordion lattice with tunable spacing d| and depth V4. Key results
Protocol. Prepare a wave packet over selected sites, quench a; < 0, remove axial trap to form single-site (SS) and multi-site trapped atoms > Stable SS window near a, ~ —8 a.
(MS) solitons. mc,i_ﬂg' j Frmag > MS solitons persist for 100-250 ms.
» Cs BEC in a crossed dipole trap; interactions tuned via a broad Feshbach resonance with a zero crossing near 17.1 G. W _e¥ T > Variational theory matches stability trends.
» Transfer to a 780 nm accordion lattice and select 1-3 sites via microwave transfer and resonant light. e i l > 3D-GPE with loss captures collapse thresholds and
» Typical preparation: N ~ 3 x 10* before selection, N < 3 x 10° after selection. @ Fga reproduces atom-number dynamics.
: : : : : al__ e
» Quench ag and release the axial trap in ~ 2 ms to trigger soliton formation. .- LZ.
> Image after evolution using a magnification ramp: increase V; and expand d| to resolve site occupations. lattice | r
guiding beam

MULTI-SITE SOLITARY WAVES

~ 50 . . . ' o - Multi-site packets are prepared from three adjacent sites and sets to a 3-5 site distribution. We track the
® g 1 . . . .
= (i) (i) ) O 20 3 width w,, and site occupations over 100-250 ms after the quench. For a; ~ +2.0 gy the packet disperses,
< P q P P
£ “F - while for a; ® —5.7 ag it remains localized and soliton-like. Early-time atom loss is dominated by three-
@) l () PiezoMirror S 20 o body recombination in high-density regions; subsequent loss slows as the packet expands.
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Figure 4. Time evolution and stability of MS solitons (left). Simulations with the 3D-GPE (right).
Figure 1. Trap and lattice geometry (left) and quench protocol (right). (From Ref. [2]) L )
2 (hf[/d )2 K2 k2 CoMPARISON WITH GROSS-PITAEVSKII THEORY: COLLAPSE PREVENTED BY LOSSES
- . s Er - - = L ‘
ihory = —— VY + Vi + 2algly 1"y — igsly['y .
> di =3.2(2) pm (prep) > N = 2900 (MS) Mean-field dynamics with contact interactions g = 2a;N/a, and an effective three-body loss term gs.
> Vi ~ 100 E, (selection) > w, ~ 21 X (25-40) Hz The density loss is parametrized by one-, two-, and three-body processes: three-body loss is dominant
> N ~ 1800 (SS) > ¢ up to 250 ms (MS), 2 (SS) in the experimental conditions
Site occupations N; are extracted from absorption images after the magnification sequence. . 1 ) ] AN?L,
: : o : o : n(r,t) = ——n(r,t) — Lyn(r, t)° — Lsn(r, t)° — g5 = .
» SS measurement: central-site fraction N./ Nt tracks localization and identifies stable windows. T 2
» MS measurement: width w,, quantifies dispersion rates and stability over 100—-250 ms. We use Ly = 5% 107-5 x 1078 m®s™! and V(x, y, z) = w?mz?/2 + w? m(x? + y?)/2 + V; cos(2k,.z). We
> Stability test: compare measured dynamics with variational barriers Ess, Ey;s and 3D-GPE. compare data with 3D-GPE using these interaction and loss parameters; it captures the collapse/disper-
> Loss dynamics: early-time three-body loss reduces N, then slows as the packet expands. sion boundary and the measured dynamics of w,, and atom number. Calculations show two regimes:
) ’ rapid density increase with strong loss for large negative as, and slow dispersion for weaker attraction.
VARIATIONAL MODEL AND STABILITY @,

We use a Gaussian variational ansatz to derive an effective energy function for SS/MS stability.

Width w,, (sites)
N
N
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0.6
Gaussian ansatz is parametrized by n (axial lenght) and o (transverse length): 20— %’g 051
1 + 9 11 , Scattering length a; (a,) § = 04}
X Y z 2 7 8 i

r) = ————-exp|— - > E(n,0) ==|—+—+o0 Vo exp(—k © 5203
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Minimizing over o gives E(n) with SS/MS minima and barriers Bgs, Bas ﬁ < S‘;
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> Interaction parameter g = 2a;N/a,, lattice depth V; and lattice wave number k; = 7/d| enter the
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energy landscape. Predicts stability regions that guide experimental scans of ag, Vj, and d| . _
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E 1.1} ~ 22 6 Figure 5. Collapse of multi-site wave packets: wy, vs a; with 3D-GPE band (left) and transverse distribution from the
o E a [z ' numerical solution over the dynamics in the strongly attractive case (right).
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s 1 aal L PR R M| " Loy | MS ] MS
10° 10’ 107 -« S > imi ipti ics:
Axial length 1 (um) 0 1o 08 04 0 12 08 04 Reduced 'models (NPSE and 1D GPE limits) offer a corr.lpact. d.escrlptlon of 3D dynamics;
Interaction strength g Interaction strength g systematic benchmarks across (as, Vo, d.) can map their validity.
Figure 2. Variational stability map versus (g, Vo, .. » Full 3D-GPE simulations (code in Rust and Python is available:
. / https://github.com/lorenzifrancesco/rust-waves @ A )
SINGLE-SITE SOLITARY WAVES can already be used as a benchmark.
: . : . » The barrier picture provides rules for stability/decay; extending it with reduced models can guide
Three regimes appear: stable SS, dispersion near a;~ 0, and collapse for strong attraction. For a; = —8 a, P P v/ y 5 5
: : fast parameter scans.
the wave packet stays localized for up to ~ 2's, while a; < —10 g leads to collapse. _ . . . o .
o) » Beyond SS/MS bright solitons, lattice gap solitons near band edges and repulsive-interaction
. - (23 ) self-trapped states may be investigated.
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