

Experimental Observation of Single- and Multi-Site Matter-Wave Solitons in an Optical Accordion Lattice

Robbie Cruickshank ¹ Francesco Lorenzi ^{† 2, 3} Arthur La Rooij ¹ Ethan Kerr ¹ Timon Hilker ¹
Stefan Kuhr ¹ Luca Salasnich ^{2, 3, 4} Elmar Haller ¹

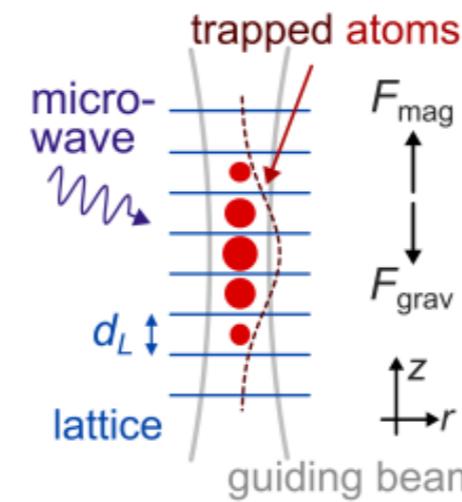
²Dip. Fisica e Astronomia, Univ. Padova, Italy

³INFN, Sezione di Padova, Italy

¹Dept. of Physics & SUPA, Univ. of Strathclyde, Glasgow, UK

⁴Padua QTech Center, Univ. Padova, Italy

Theory support


[†]Now with Dip. Ingegneria dell'Informazione, Univ. Padova, Italy

SUMMARY: SOLITONS OF ULTRACOLD CESIUM IN A OPTICAL LATTICE

Platform. Cesium BEC in an **optical accordion lattice** with tunable spacing d_L and depth V_0 .

Protocol. Prepare a wave packet over selected sites, quench $a_s < 0$, remove axial trap to form **single-site (SS)** and **multi-site (MS)** solitons.

- Cs BEC in a crossed dipole trap; interactions tuned via a broad Feshbach resonance with a zero crossing near 17.1 G.
- Transfer to a 780 nm accordion lattice and select 1–3 sites via microwave transfer and resonant light.
- Typical preparation: $N \sim 3 \times 10^4$ before selection, $N \lesssim 3 \times 10^3$ after selection.
- Quench a_s and release the axial trap in ~ 2 ms to trigger soliton formation.
- Image after evolution using a magnification ramp: increase V_0 and expand d_L to resolve site occupations.

Key results

- Stable SS window near $a_s \approx -8 a_0$.
- MS solitons persist for 100–250 ms.
- Variational theory matches stability trends.
- 3D-GPE with loss captures collapse thresholds and reproduces atom-number dynamics.

OVERVIEW OF THE EXPERIMENTAL CONDITIONS

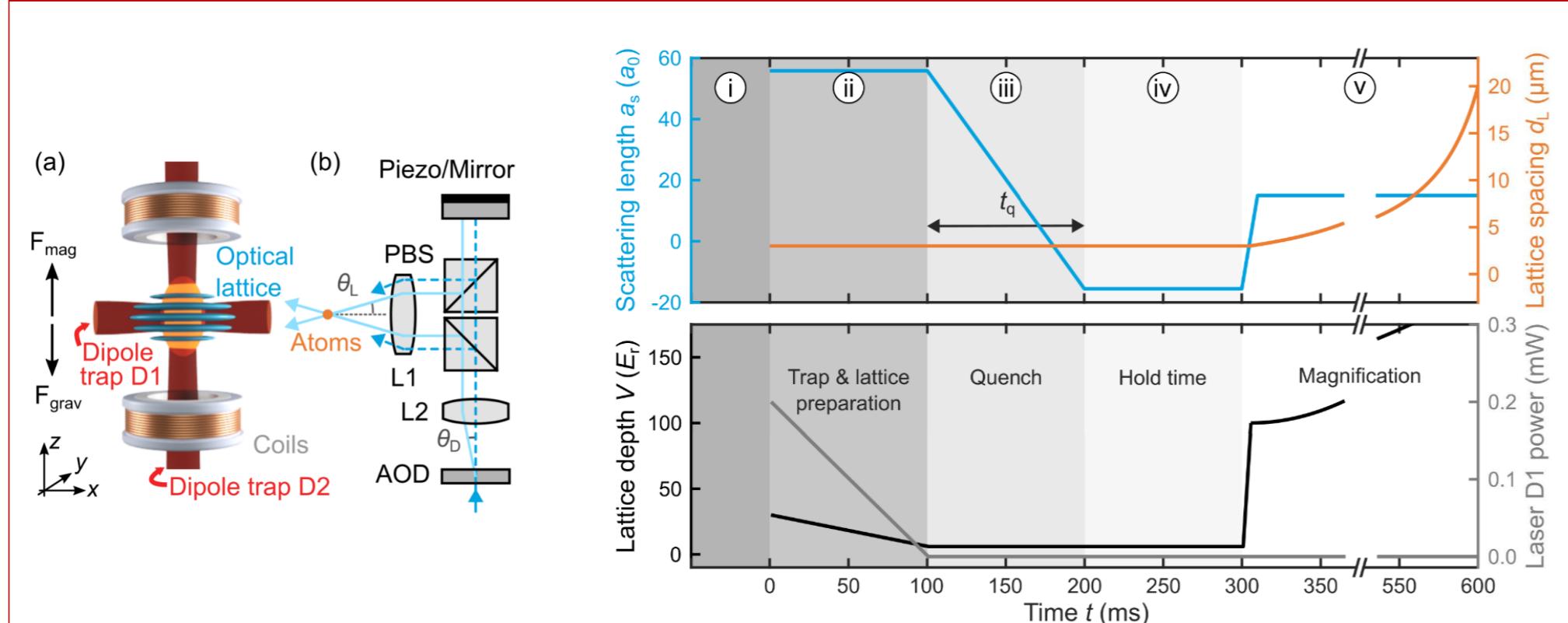


Figure 1. Trap and lattice geometry (left) and quench protocol (right). (From Ref. [2])

$$d_L = \frac{\lambda}{2 \sin(\theta_L)}, \quad E_r = \frac{(\hbar\pi/d_L)^2}{2m} = \frac{\hbar^2 k_L^2}{2m}.$$

- $d_L = 3.2(2) \mu\text{m}$ (prep)
- $V_0 \approx 100 E_r$ (selection)
- $N \approx 1800$ (SS)
- $N \approx 2900$ (MS)
- $\omega_\perp \approx 2\pi \times (25-40) \text{ Hz}$
- t up to 250 ms (MS), 2 s (SS)
- $E_r = \frac{(\hbar\pi/d_L)^2}{2m} = \frac{\hbar^2 k_L^2}{2m}$
- Site occupations N_j are extracted from absorption images after the magnification sequence.
- **SS measurement:** central-site fraction N_c/N_{tot} tracks localization and identifies stable windows.
- **MS measurement:** width w_m quantifies dispersion rates and stability over 100–250 ms.
- **Stability test:** compare measured dynamics with variational barriers E_{SS} , E_{MS} and 3D-GPE.
- **Loss dynamics:** early-time three-body loss reduces N , then slows as the packet expands.

VARIATIONAL MODEL AND STABILITY

We use a Gaussian variational ansatz to derive an effective energy function for SS/MS stability.

$$E = \int d\mathbf{r} \psi^*(\mathbf{r}) \left[-\frac{1}{2} \nabla^2 + \frac{1}{2} (x^2 + y^2) + U(z) + \pi g |\psi(\mathbf{r})|^2 \right] \psi(\mathbf{r}), \quad U(z) = -V_0 \cos(2k_L z).$$

Gaussian ansatz is parametrized by η (axial length) and σ (transverse length):

$$\psi(\mathbf{r}) = \frac{1}{\pi^{3/4} \sigma \eta^{1/2}} \exp\left(-\frac{x^2 + y^2}{2\sigma^2} - \frac{z^2}{2\eta^2}\right) \rightarrow E(\eta, \sigma) = \frac{1}{2} \left(\frac{1}{2\eta^2} + \frac{1}{\sigma^2} + \sigma^2 \right) + \frac{g}{2\sqrt{2\pi} \sigma^2 \eta} - V_0 \exp(-k_L^2 \eta^2).$$

Minimizing over σ gives $E(\eta)$ with SS/MS minima and barriers B_{SS} , B_{MS} .

- Interaction parameter $g = 2a_s N/a_\perp$, lattice depth V_0 and lattice wave number $k_L = \pi/d_L$ enter the energy landscape. Predicts stability regions that guide experimental scans of a_s , V_0 , and d_L .

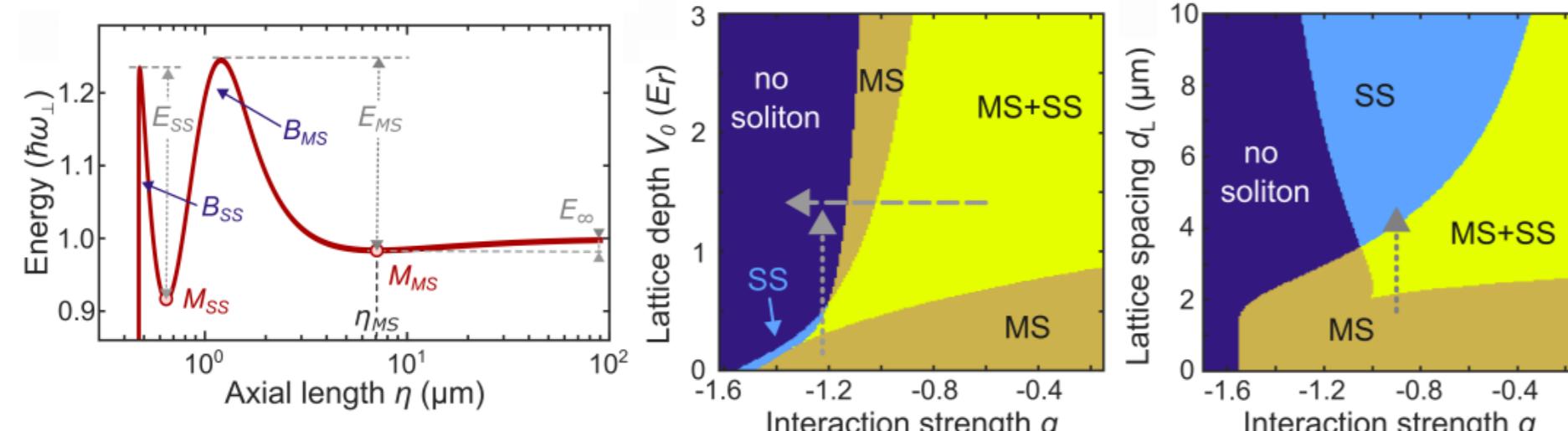


Figure 2. Variational stability map versus (g, V_0, d_L) .

SINGLE-SITE SOLITARY WAVES

Three regimes appear: stable SS, dispersion near $a_s \approx 0$, and collapse for strong attraction. For $a_s \approx -8 a_0$ the wave packet stays localized for up to ~ 2 s, while $a_s \lesssim -10 a_0$ leads to collapse.

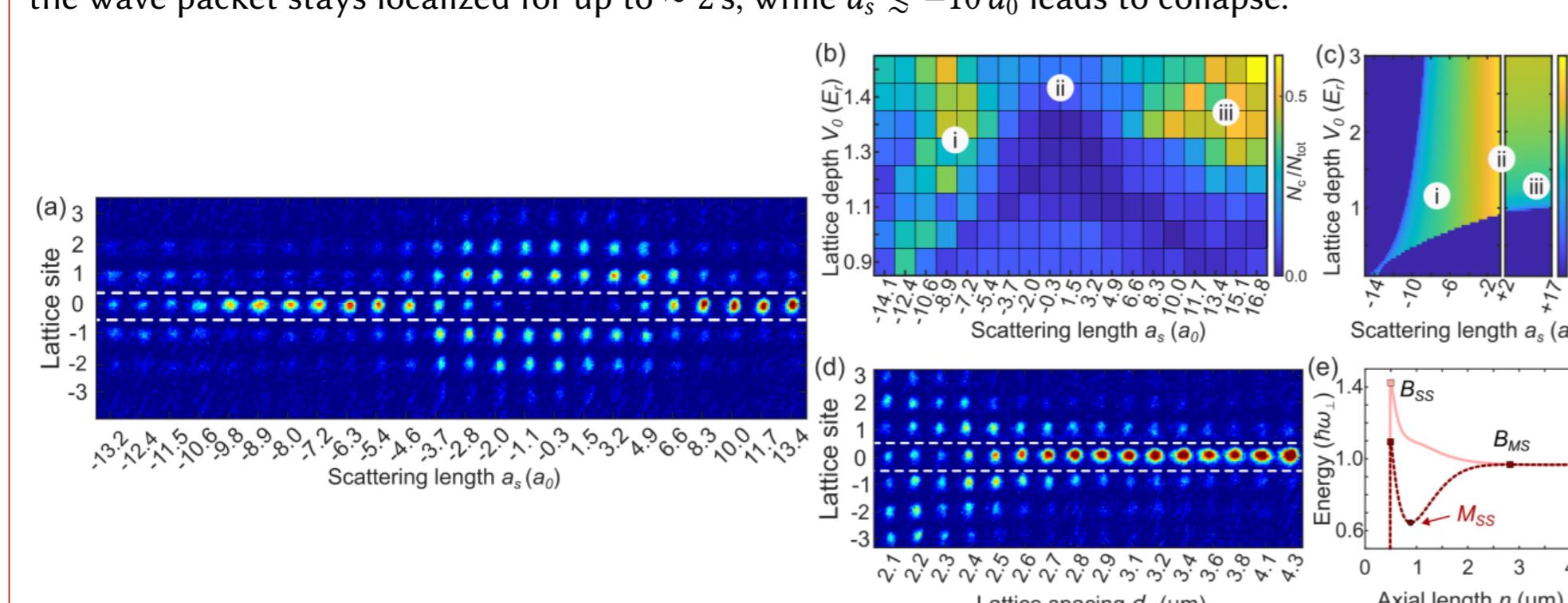


Figure 3. Stability of single-site solitons: density profiles and central-site fraction versus a_s , V_0 , and d_L .

A stable SS window appears around $a_s \approx -8 a_0$, while repulsive interactions produce self-trapping at large V_0 .

MULTI-SITE SOLITARY WAVES

Multi-site packets are prepared from three adjacent sites and sets to a 3–5 site distribution. We track the width w_m and site occupations over 100–250 ms after the quench. For $a_s \approx +2.0 a_0$ the packet disperses, while for $a_s \approx -5.7 a_0$ it remains localized and soliton-like. Early-time atom loss is dominated by three-body recombination in high-density regions; subsequent loss slows as the packet expands.

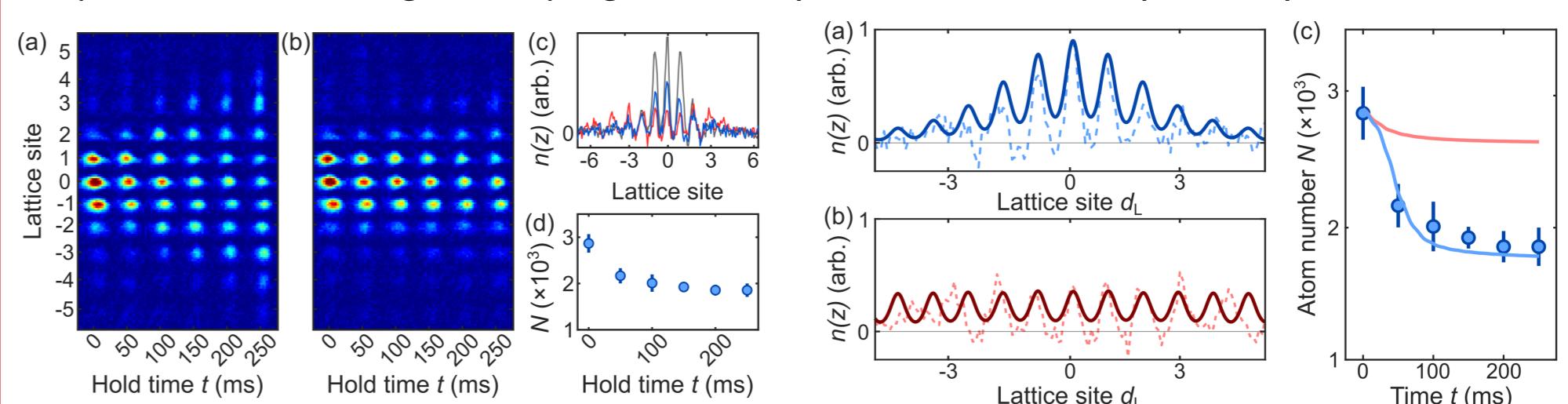


Figure 4. Time evolution and stability of MS solitons (left). Simulations with the 3D-GPE (right).

COMPARISON WITH GROSS-PITAEVSKII THEORY: COLLAPSE PREVENTED BY LOSSES

$$i\hbar\partial_t\psi = -\frac{\hbar^2}{2m} \nabla^2\psi + V\psi + 2\pi\hbar^2 g|\psi|^2\psi - ig_5|\psi|^4\psi.$$

Mean-field dynamics with contact interactions $g = 2a_s N/a_\perp$ and an effective three-body loss term g_5 . The density loss is parametrized by one-, two-, and three-body processes: three-body loss is dominant in the experimental conditions

$$\dot{n}(\mathbf{r}, t) = -\frac{1}{\tau} n(\mathbf{r}, t) - L_2 n(\mathbf{r}, t)^2 - L_3 n(\mathbf{r}, t)^3 \rightarrow g_5 = \frac{\hbar N^2 L_3}{2}.$$

We use $L_3 = 5 \times 10^{-39} - 5 \times 10^{-38} \text{ m}^6 \text{ s}^{-1}$ and $V(x, y, z) = \omega_z^2 mz^2/2 + \omega_1^2 m(x^2 + y^2)/2 + V_0 \cos(2k_L z)$. We compare data with 3D-GPE using these interaction and loss parameters; it captures the collapse/dispersion boundary and the measured dynamics of w_m and atom number. Calculations show two regimes: rapid density increase with strong loss for large negative a_s , and slow dispersion for weaker attraction.

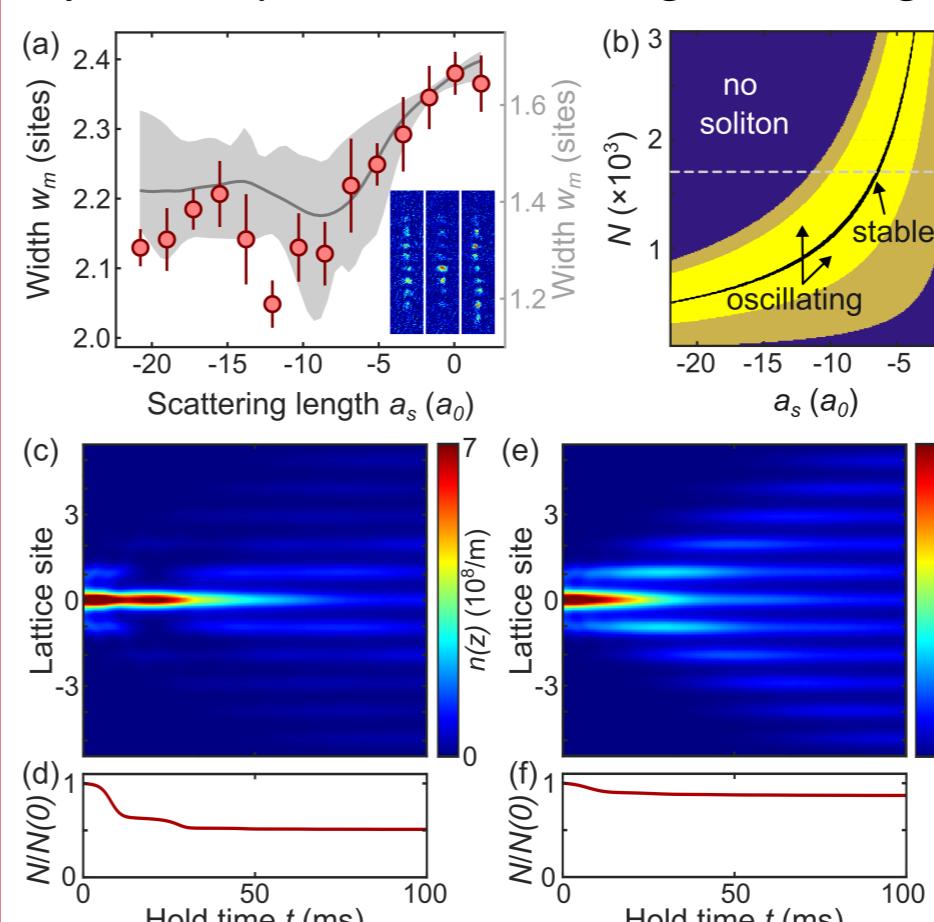


Figure 5. Collapse of multi-site wave packets: w_m vs a_s with 3D-GPE band (left) and transverse distribution from the numerical solution over the dynamics in the strongly attractive case (right).

REMARKS AND FUTURE DIRECTIONS

- Reduced models (NPSE and 1D GPE limits) offer a compact description of 3D dynamics; systematic benchmarks across (a_s, V_0, d_L) can map their validity.
- Full 3D-GPE simulations (code in Rust and Python is available: <https://github.com/lorenzifrancesco/rust-waves>) can already be used as a benchmark.
- The barrier picture provides rules for stability/decay; extending it with reduced models can guide fast parameter scans.
- Beyond SS/MS bright solitons, lattice gap solitons near band edges and repulsive-interaction self-trapped states may be investigated.

REFERENCES

1. R. Cruickshank, F. Lorenzi, A. La Rooij, E. F. Kerr, T. Hilker, S. Kuhr, L. Salasnich, and E. Haller, *Phys. Rev. Lett.* **135**, 263404 (2025).
2. R. Cruickshank, A. La Rooij, E. F. Kerr, T. Hilker, S. Kuhr, and E. Haller, *Opt. Express* **34**, 623 (2026).
3. L. Salasnich, A. Cetoli, B. A. Malomed, and F. Toigo, *Phys. Rev. A* **75**, 033622 (2007).
4. F. Lorenzi and L. Salasnich, *Sci. Rep.* **14**, 4665 (2024).
5. S. Al-Assam, R. A. Williams, and C. J. Foot, *Phys. Rev. A* **82**, 021604 (2010).
6. H. Saito and M. Ueda, *Phys. Rev. A* **65**, 033624 (2002).

Scan for paper and data