
A couple of algorithms for numerical optics:

Gerchberg–Saxton phase retrieval and

“Fast” Hankel transforms
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Gerchberg–Saxton Phase

Retrieval



Phase retrieval problem statement

• Phase retrieval is the task to reconstruct complex

fields from intensity-only data.

We seek a complex scalar �eld (e.g. proportional to one

polarization of the electric �eld) u(r⊥, z = 0) given

intensity constraints in two planes:

I(r⊥, z = 0) = |u(r⊥, z = 0)|2,

I(r⊥, z = L) = |u(r⊥, z = L)|2.

The �eld u(r⊥, z = L) is obtained by propagating

u(r⊥, z = 0) between planes within a given model for

scalar di�raction.

z

z = 0

z = L
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Propagation operator

The general relationship between complex �elds is written in terms of a unitary operator:

u(r⊥, z = L) = ULu(r⊥, z = 0).

A quite general one is the angular spectrum method, which leads to the paraxial

propagation and to Fraunhofer di�raction in the far �eld case.

The phase retrieval setting resembles a boundary value problem rather than an initial

value problem.

However, I wasn't able to �nd simple mathematical results about the uniqueness of the

solution (modulo a global phase).

Does uniqueness naturally requires superresolution? It may be possible within ASM

due to the evanescent �eld component.
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Gerchberg–Saxton loop

1

1R.W. Gerchberg and W.O. Saxton, Optik 35, 237 (1972).
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Algorithm sketch (ASM)

1. Initialize u(0)(r⊥, z = 0) with measured magnitude
√

I(r⊥, z = 0) and random phase.

2. Propagate to plane z = L: u(n)(r⊥, z = L) = ULu
(n)(r⊥, z = 0).

3. Enforce magnitude at z = L: ũ(n)(r⊥, z = L) =
√
I(r⊥, z = L) eiϕ

(n)(r⊥,z=L).

4. Back-propagate: ũ(n)(r⊥, z = 0) = U−Lũ
(n)(r⊥, z = L).

5. Enforce object magnitude: u(n+1)(r⊥, z = 0) =
√
I(r⊥, z = 0) eiϕ

(n)(r⊥,z=0).
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Numerical experiments

• Grid: 2048× 2048.

• 20 GS iterations.

• Propagation over

L = 10−2zR

(zR =
πw2

0
λ0

).

• Transverse length

normalized to

w0 = 103λ0 initial

Gaussian width.

• Runs in ∼ 10s on in

i7-12700 16GB laptop.
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How does the diffraction look like?
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Speed of convergence
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Applications and scope

• Pulse shaping: retrieve phase modulation from measured intensity constraints.

• Coherent di�raction imaging and ptychography.

• Wavefront sensing and optical testing.

• Holography and beam shaping with SLMs.

This is only a starting point; the literature contains many alternative algorithms and

variants tailored to speci�c constraints.

9



GS for Jones matrix holography

2

2N.A. Rubin et al., Sci. Adv. 7, eabg7488 (2021).
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“Fast” Hankel Transforms



Helmholtz equation and diffraction

• Di�ractive propagation is naturally formulated in the Fourier wavevector domain.

• Radially symmetric systems with radially symmetric input are very common and may

be studied in a reduced setting.

The scalar �eld envelope E satis�es

(∇2 + κ2)E = 0,

and its Fourier components obey the dispersion relation

k2x + k2y + k2z = κ2.

where κ = nω/c is the wavenumber in the linear, isotropic and homogeneous medium.
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Paraxial propagation (spectral)

If A is the complex envelope in z, in the paraxial approximation the envelope spectrum

evolves as

Â(kx, ky, z) = Â(kx, ky, 0) exp

[
−i

k2x + k2y
2κ

z

]
.

De�ne the propagator

Û(kx, ky, z) = exp

[
−i

k2x + k2y
2κ

z

]
,

so that

A(r⊥, zn) = F−1
⊥

[
Û(kx, ky, zn)F⊥[A(r⊥, 0)]

]
.

FFT-based evaluation on an N ×N grid scales as O(N2 logN), while direct quadrature

scales as O(N4). We do have exact solutions, for example for Gaussian and Bessel beams.
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Circular symmetry and Hankel transform

When A(r⊥, z) = A(r, z), the transverse transform becomes

F[A(r⊥, z)](k⊥, z) =

∫
d2r⊥ rA(r, z) exp [−ik⊥ · r⊥]

= 2π

∫ ∞

0

dr rA(r, z)J0(kr)

= H[A(r, z)](k, z).

Can we evaluate this Fourier{Bessel (Hankel) integral e�ciently, in a way analogous to the

FFT? Naive quadrature scales as O(N2), while with a fast method we may aim at

O(N logN).

13



Here is a fast method!

3

3A.E. Siegman, Opt. Lett. 1, 13 (1977).
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Logarithmic coordinate transformation

The standard Hankel transform of order ℓ is given by

g(ρ) = 2π

∫ ∞

0

rf(r)Jℓ(2πρr) dr (1)

with a symmetric reverse transform integral from g(ρ) to f(r). Using the change of

variables r = r0e
αx, ρ = ρ0e

αy, where r0, ρ0, and α are initially arbitrary, converts the

one-sided Hankel transform integral [Eq. (1)] into the two-sided cross-correlation integral

ĝ(y) =

∫ ∞

−∞
f̂(x) Ĵ(x+ y) dx. (2)

this can be evaluated with FFT methods.
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The problem with accuracy: wise solution of the sampling points

4

4V.Magni et al., JOSA A 9, 2031 (1992).
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Saving the numerical Parseval relation

5

5L.Yu et al., Opt. Lett. 23, 409 (1998).

17



Performance (time)

2D-FFT-based propagation on an N ×N grid scales as O(N2 logN), while direct evaluation scales

as O(N4).
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Performance (memory)
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Applications

6

6Z. Li et al., Nat. Commun. 13, 2409 (2022).
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Thanks for the attention!
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