A couple of algorithms for numerical optics:
Gerchberg—Saxton phase retrieval and

“Fast” Hankel transforms




Gerchberg—Saxton Phase
Retrieval



Phase retrieval problem statement

e Phase retrieval is the task to reconstruct complex

fields from intensity-only data.

We seek a complex scalar field (e.g. proportional to one
polarization of the electric field) u(r,,z = 0) given

intensity constraints in two planes:

I(r;,2=0)=|u(ry,z= O)\Q,

I(ry,z=1L)=|u(ry,z= L)

The field u(r,,z = L) is obtained by propagating

u(ry,z = 0) between planes within a given model for

scalar diffraction.



Propagation operator

The general relationship between complex fields is written in terms of a unitary operator:
u(ry,z=1L)=Upu(r,,z=0).

A quite general one is the angular spectrum method, which leads to the paraxial

propagation and to Fraunhofer diffraction in the far field case.

The phase retrieval setting resembles a boundary value problem rather than an initial
value problem.
However, I wasn’t able to find simple mathematical results about the uniqueness of the

solution (modulo a global phase).

Does uniqueness naturally requires superresolution? It may be possible within ASM

due to the evanescent field component.



Gerchberg—Saxton loop
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Algorithm sketch (ASM)

Initialize u(*)(r .,z = 0) with measured magnitude \/m and random phase.
Propagate to plane z = L: u(™(r,z = L) = Upu™(r .,z = 0).

Enforce magnitude at z = L: (™ (r,,2 = L) =+/I(r.,z = L) ei¢ ™ (ru,z=L)
Back-propagate: u(™ (ry,z=0)=U_ra™(r,,z = L).

Enforce object magnitude: u("*V(r,,z = 0) = memw(u,z:o).
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Numerical experiments

e Grid: 2048 x 2048.
e 20 GS iterations.

e Propagation over
L=10""zr

2
(zr = 530):

Intensity
Intensity

e Transverse length
normalized to
wo = 103\ initial

Gaussian width.

Phase [rad]
Phase [rad]

e Runs in ~ 10s on in
17-12700 16GB laptop.




How does the diffraction look like?
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Speed of convergence
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Applications and scope

Pulse shaping: retrieve phase modulation from measured intensity constraints.

Coherent diffraction imaging and ptychography.

Wavefront sensing and optical testing.

Holography and beam shaping with SLMs.

This is only a starting point; the literature contains many alternative algorithms and

variants tailored to specific constraints.



GS for Jones matrix holography
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“Fast” Hankel Transforms



Helmholtz equation and diffraction

e Diffractive propagation is naturally formulated in the Fourier wavevector domain.

e Radially symmetric systems with radially symmetric input are very common and may

be studied in a reduced setting.

The scalar field envelope FE satisfies
(VZ+K2)E =0,
and its Fourier components obey the dispersion relation
k24K, + k2 =K.

where kK = nw/c is the wavenumber in the linear, isotropic and homogeneous medium.
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Paraxial propagation (spectral)

If A is the complex envelope in z, in the paraxial approximation the envelope spectrum

evolves as
. ~ K2+ k2
Alky, ky, z) = A(ky, ky,0) exp fZ”TJz .
K
Define the propagator
_ k2 + k2
kz,ky,2) = —i= Y21,
U(kg, ky, 2) exp[ =%

so that
Ar1,20) = 1 [0ke, by, 20) FL[AG1,0)]]

FFT-based evaluation on an N x N grid scales as O(N?1log N), while direct quadrature

scales as O(N?). We do have exact solutions, for example for Gaussian and Bessel beams.
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Circular symmetry and Hankel transform

When A(r,,z) = A(r, z), the transverse transform becomes
FIA(r,,2)]|(ki,2) = /d2rl rA(r,z)exp [—iky 1]
=27 /000 dr rA(r, z)Jo(kr)
= H[A(r, 2)](k, 2).

Can we evaluate this Fourier—Bessel (Hankel) integral efficiently, in a way analogous to the
FFT? Naive quadrature scales as O(/N?), while with a fast method we may aim at
O(Nlog N).
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Here is a fast method!

July 1977 / Vol.1,No.1 / OPTICS LETTERS 13

Quasi fast Hankel transform

A, E. Siegman

Edward L. Ginzton Laboratory and Department of Electrical Engineering, Stanford University, Stanford, California 94305
Received March 25, 1977

We outline here a new algorithm for evaluating Hankel (Fourier-Bessel) transforms numerically with enhanced
speed, accuracy, and efficiency. A nonlinear change of variables is used to convert the one-sided Hankel transform
integral into a two-sided cross-correlation integral. This correlation integral is then evaluated on a discrete sam-
pled basis using fast Fourier transforms. The new algorithm offers advantages in speed and substantial advan-
tages in storage requirements over conventional methods for evaluating Hankel transforms with large numbers of
points. g

3A.E. Siegman, Opt. Lett. 1, 13 (1977).
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Logarithmic coordinate transformation

The standard Hankel transform of order / is given by

o) =2n [ " F () Je(2mpr) dr (1)

0

with a symmetric reverse transform integral from ¢(p) to f(r). Using the change of
variables r = rge®®, p = ppe®, where 7¢, pg, and « are initially arbitrary, converts the

one-sided Hankel transform integral [Eq. (1)] into the two-sided cross-correlation integral

9 = [ " Fle) Tle + 1) do. (2)

this can be evaluated with FFT methods.
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The problem with accuracy: wise solution of the sampling points

Magni et al. Vol. 9, No. 11/November 1992/J. Opt. Soc. Am. A 2031

High-accuracy fast Hankel transform for optical
beam propagation

Vittorio Magni, Giulio Cerullo, and Sandro De Silvestri

Centro di Elettronica Quantistica e Strumentazione Elettronica del Consiglio Nazionale delle Ricerche,
Dipartimento di Fisica del Politecnico, Piazza Leonardo da Vinci 32, 20133 Milano, Italy

Received March 3, 1992; accepted May 6, 1992

We describe a new method for the numerical calculation of the zero-order Hankel (Fourier-Bessel) transform
that has a high computational efficiency and an accuracy that can be 2 orders of magnitude greater than that
of the standard quasi-fast Hankel procedure. The new method offers particular advantages in calculating op-
tical beam propagation and resonator modes at high Fresnel numbers.

4V. Magni et al, JOSA A 9, 2031 (1992).
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Saving the numerical Parseval relation

March 15, 1998 / Vol. 23, No. 6 / OPTICS LETTERS 409

Quasi-discrete Hankel transform

Li Yu, Meichun Huang, and Mouzhi Chen

Department of Physics, Xiamen University, Xiamen 361005, China

Wenzhong Chen

Department of Mathematics, Xiamen University, Xiamen 31005, China

Wenda Huang and Zhizhong Zhu
Department of Physics, Xiamen University, Xiamen 361005, China

Received November 24, 1997

A quasi-discrete Hankel transform (QDHT) is presented as a new and efficient framework for numerical

evaluation of the zero-order Hankel transform. A discrete form of Parseval’s theorem is obtained for the first

time to the authors’ knowledge, and the transform matrix is discussed. It is shown that the S factor, defined

as the products of a truncated radius, is critical to building the QDHT. © 1998 Optical Society of America
OCIS codes: 000.5360, 070.2590.

5L.Yu et al., Opt. Lett. 23, 409 (1998).
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Performance (time)
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2D-FFT-based propagation on an N x N grid scales as O(N?log N), while direct evaluation scales

as O(N*).
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Performance (memory)
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Applications

Design flow chart
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Fig. 2 Meta-optics inverse-design flow chart. With prior knowledge of the meta-atom library and optimization problem, we start with a random
metasurface design and then update the design through optimization loops that consists of a forward simulator and an adjoint-based optimization engine.
Once the criterion is met, we terminate the design loop and validate the design in simulation. Note: CCSA is short for conservative convex separable
approximation. 6

6Z.Li et al., Nat. Commun. 13, 2409 (2022).
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Thanks for the attention!
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