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Interactions in a quantum gases

• In cold atomic gases the interparticle spacing is typically an order of magnitude larger

than length scale of the interaction −→ for a large class of systems only two-body

interactions are relevant.

• At typical temperatures for Bose-Einstein condensation, atoms are at the electronic

ground state, so the only relevant degree of freedom is represented by the hyper�ne

states. The change of internal states due to scattering may induce trap loss. We

considere here only single-channel scattering.

• It is not in general possible to make very precise theoretical calculation for the shape

of the potentials −→ in Monte Carlo simulations we use some model potentials that

are related to speci�c scattering parameters.

For example

V (r) = −C6

r6
− C10

r10
.
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Universality in quantum gases

Regardless of the actual shape of the potential, the interactions can be completely

described by a single parameter: the s-wave scattering length as.
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Universality in quantum gases 2

S. Giorgini et al., Phys. Rev. A 60, 6 (1999)
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Evidences of nonuniversality

In some recent DMC calculations, it has been shown for Bose-Bose mixtures that the

universal description is not always successful in describing the gas properties.

V. Cikojevic et al., Phys. Rev. A 99, 2 (2019).
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T-matrix formalism

We de�ne the transmission (T-)matrix,

T̂ |ϕ⟩ = V̂
∣∣ψ+

〉
,

by using plane waves, eigenstates of the momentum operator, we can express the

scattering length from the T-matrix

f(k′,k) = − m

4πℏ2
⟨ϕ′| T̂ |ϕ⟩ .

where Tk′k = ⟨ϕ′| T̂ |ϕ⟩.

In addition, we have the Lippman-Schwinger equation

T̂ |ϕ⟩ = V̂ |ϕ⟩+ V̂ Ĝ+
0 T̂ |ϕ⟩ ,
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T-matrix formalism 2

since it holds for every |ϕ⟩, this equation holds in an operatorial sense

T̂ = V̂ + V̂ Ĝ+
0 T̂ .

The Born series is the expansion of the above equation

T̂ = V̂ + V̂ Ĝ+
0 V̂ + V̂ (Ĝ+

0 V̂ )2 + ....

A fundamental approximation can be imposed keeping only the �rst term. This is the

Born approximation

T̂ ≈ V̂

In the Born approximation, the scattering length can be expressed readily from the

potential, in the limit k → 0

as =
m

4πℏ2

∫
d3r V (r).
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Effective potential

In the low wavelength limit, scattering is dominated by the s-wave interaction . So we can

substitute the potential with an e�ective one that reproduces the correct scattering length.

One example, very useful in the calculations, is

Ve�(r) = g0δ
(3)(r).

Expressing the coe�cient as

g0 =

∫
d3rVe�(r),

we can easily match the result to the e�ective range as

g0 =
4πℏ2

m
as.
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Effective potential 2

It is possible to make more precise calculations. In fact, the s-wave phase shift can be

expanded into

k cot(δ0) = −
1

as
+

1

2
rsk

2,

in which the e�ective range rs is de�ned. In an analogous way, we can take an expansion

to the second order of the potential in momentum space

Ve�(k) = g0 + g2k
2.

We characterize the relation between g0, g2 and as, rs later on. We just notice that this

kind of potential corresponds to a real space potential including delta functions and

derivatives of delta functions.

12 / 54



Outline of the talk

1. Introduction and motivation

2. Framework of scattering theory

3. E�ective range correction

4. Some applications

13 / 54



On-shell approximation

The Lippman-Schwinger equation in the momentum space can be written explicitly

Tkk′ = Vkk′ +

∫
dDk′′ Vkk′′

ℏ2k2

2mr
− ℏ2(k′′)2

2mr
+ i ε

Tk′′k′ .

We use a generalized partial wave expansion on the equation, and

Vkk′ =
1

(2π)D

∑
l

Vl(k, k
′)N(D, l)Pl(k̂ · k̂′).

We consider only the s-wave projection, and, considering the diverging behaviour of of the

integral argument for small ε, asssume an on-shell approximation:

T0(k) = V0(k) + V0(k) C(k) T0(k),

with

C(k) = SD

∫ ∞

0

dk′′

(2π)D
1

ℏ2k2

m − ℏ2(k′′)2

m + iε
.
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Dimensional regularization

The integral for C(k) can be calculated using dimensional regularization

C(k) = − SD

(2π)D
m

ℏ2

∫ ∞

0

dk′′(k′′)D−1 1

(k′′)2 + (−ik)2
= −m

ℏ2
(−ik)D−2B(D/2, 1−D/2)

(4π)D/2Γ(D/2)
,

being B the Euler beta function, that has an integral representation for positive x, y:

B(x, y) =

∫ +∞

0

dt
tx−1

(1 + t)x+y
,

we know that an alternative expression for the beta function is in terms of the gamma

function, i.e.

B(x, y) =
Γ(x)Γ(y)

Γ(x+ y)
.
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Dimensional regularization 2

This allows us to express the beta function even outside the domain of validity of the

integral representation. Using the above equation,

C(k) = −m
ℏ2

(−ik)D−2Γ(1−D/2)
(4π)D/2

.

In fact, for D = 2, we have the divergent value Γ(0). The technique is to use a non-integer

dimension D = 2− ϵ and let ϵ go to zero only at the end of the calculation. So we start

from

C(k) = −m
ℏ2
κϵ0(−ik)−ϵ Γ(ϵ/2)

(4π)1−ϵ/2
,

where the regulator κ0 is a scale wavenumber. The small-ϵ expansion of the gamma

function reads

Γ(ϵ/2) =
2

ϵ
− γ +O(ϵ) ,
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Dimensional regularization 3

where γ ≃ 0.5572 is the Euler-Mascheroni constant. Taking into account that

xϵ = eln(x
ϵ) = eϵ ln(x) = 1 + ln(x)ϵ+O(ϵ2),

and ln(−i) = −iπ/2, one gets, after removing the singularity

C(k) =
m

2πℏ2
ln

(
k

2

eγ/2

Λ

)
− m

4ℏ2
i ,

setting Λ =
√
πκ0, which plays the role of a ultraviolet cuto�.
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Results

Using the regularized C(k), we obtain a systematic link between scattering parameters and

the interaction potential expansion, as reported, by connecting our analysis to the values

of the scattering amplitudes in all dimensions.

D C(k) g∗0 = g0 g∗2 = 2g2

3 −ik m
4πℏ2

4πℏ2

m as
2πℏ2

m a2srs

2 m
2πℏ2 ln

(
k
2
eγ/2

Λ

)
− m

4ℏ2 i − 4πℏ2

m
1

ln(Λ2a2
se

γ)
2π2ℏ2

m
r2s

ln2(Λ2a2
se

γ)

1 −i 1k
m
2ℏ2 − 2ℏ2

mas
−ℏ2

m rs
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Zero temperature two-dimensional Bose gas pressure

P (µ) =
m

8πℏ2
µ2 ln

(
4ℏ2

mµa2se
2γ+1/2

)
+

3m2

16ℏ4
r2s µ

3

μ
0.0 0.1 0.2 0.3

P(
μ
)

0.0

0.2

0.4

0.6

0.8
rs = 0
rs = 0.81as

rs = 1.80as

F. Lorenzi et al., Phys. Rev. A 107, 033325 (2023).
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Modified Gross-Pitaevskii equation

Now consider how one can include the improved potential into the Gross-Pitaevskii

equation. The spatial representation of the potential Ve�(k) = g0 + g2k
2 in the relative

motion frame is

Ve�(r) = g0δ
(3)(r) +

g2
2

(←−
∇2δ(3)(r) + δ(3)(r)

−→
∇2

)
So we can directly insert this term into the action functional in Hartree approximation, in

the presence of a trap potential Vtrap. We have seen that, for a generic potential,

S = N

∫
dtd3r ψ(r, t)∗

[
iℏ
∂

∂t
+

ℏ2

2m
∇2 − Vtrap(r)−

N − 1

2

∫
d3r′ |ψ(r′)|2Ve�(r′ − r)

]
ψ(r, t).

This action is in general nonlocal. By substituting the e�ective potential, dropping the

variables of the wavefunction

S = N

∫
dtd3r ψ∗

[
iℏ
∂

∂t
+

ℏ2

2m
∇2 − Vtrap −

N − 1

2

(
g0|ψ|2 +

g2
2
∇2|ψ|2

)]
ψ.
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Modified Gross-Pitaevskii equation 2

We can write the respective Euler-Lagrange equation, called Modi�ed Gross-Pitaevskii

equation

iℏ
∂

∂t
ψ =

[
− ℏ2

2m
∇2 + Vtrap + g0(N − 1)|ψ|2 + g2

2
(N − 1)∇2|ψ|2

]
ψ.
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Modified Gross-Pitaevskii equation 3

(a) (b)

F. Sgarlata et al., J. Phys. B: At. Mol. Opt. Phys. 48 115301 (2015).
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Conclusions and open problems

• Universal description of the Bose gas is an extremely powerful tool, but it can fail in

particular physical systems.

• Non-universal corrections in the low-energy limit can be calculated, as we have shown,

by using both s-wave and on-shell approximations .

Further results to achieve

• Generalize the treatment to fully address atomic mixtures.

• Compute e�ective range corrections in the context of atomic Josephson junctions in

reduced spatial dimensions.
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Thank you for the attention!

F. Lorenzi, A. Bardin, and L. Salasnich, Phys. Rev. A 107, 033325 (2023)
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Additional material



The discrepancy in the literature for the 3D case

By computing the s-wave phase shift from the energy shift (Collin, Massignan and

Pethick), one obtains

g2 ∝
a3s
3
− asrs

2
.

Instead, by using an e�ective �eld theory and matching the low-energy observables

(Braaten and Hammer), one obtains

g2 ∝ a2srs

As a puzzling consequence, we have that in the energy shift approach, even sending the

e�ective range to zero, the g2 correction stays �nite.

E. Braaten, H.-W. Hammer, and S. Hermans, Phys. Rev. A 63, 6 (2001).

A. Collin, P. Massignan, and C. J. Pethick, Phys. Rev. A 75, 1 (2007).



Scattering amplitude and partial wave

expansion



Two-body problem

Let us consider the motion of two distinguishable particles of the same mass m in a unit

volume, in presence of an interaction potential depending only on the distance between

the particles. We consider single-channel scattering. The relative motion is described by

Ĥ = Ĥ0 + V̂ ,

where Ĥ0 = p̂2/(2mr) , mr = m/2 reduced mass. We have a scattered wavefunction

expressed as

ψ(r) = eik·r + ψsc(r),

and at large distances the scattered wave is a spherical wave in the form

ψsc(r) ≈ f(θ, k)
eikr

r
,

where θ is the angle between k and r′, and k the magnitude of k. The function f is called

scattering amplitude.



s-wave scattering length from scattering amplitude

The simplest de�nition of the scattering length a is obtained taking the limit of the

wavefunction for k → 0. Moreover, the dependence of f(θ, k) on θ will be throught the

function cos(θ) for axial symmetry. In this limit the wavefunction is isotropic, so we

expect to have a constant f(θ) =: −a,

ψ(r) ≈ 1− a

r
.

The ratio of the scattered current of probability per unit solid angle to the incoming wave

current of probability per unit area is the di�erential cross section, which in the case of a

incoming plane wave is
dσ

dΩ
= |f(θ, k)|2,



s-wave scattering length from scattering amplitude 2

integrating over the whole solid angle we get the total cross section. In the limit of k → 0,

we have

σ = 4πa2.

For identical particles, one must impose symmetry and antisymmetry for the bosonic and

fermionic case, and the scattering cross section becomes doubled for Bosons, and zero for

Fermions. Fermions are not subjected to the s-wave scattering.



Scattering of identical particles

In the case of identical particles it is necessary to have symmetric or antisymmetric total

wavefunctions with respect to the exchange of the particles. Let k be aligned with the z

axis. Then the total wavefunction state reads

ψ(r) = eikz + f(θ, k)
eikr

r
.

Exchanging the particles is equivalent to change the system of reference such that

z → −z, (1)

θ → π − θ, (2)

so symmetrized/antisymmetrized wavefunction is

ψ(r) = eikz + ζe−ikz + [f(θ, k) + ζf(π − θ, k)] e
ikr

r
,



Scattering of identical particles 2

where ζ = 1 for bosons, ζ = −1 for fermions. The corresponding cross section gets

modi�ed accordingly:

σ = 8πa2,

for bosons, σ = 0 for Fermions.



Partial wave expansion

The wavefunction can be expanded in partial waves

ψ(r) =

∞∑
l=0

AlPl(cos(θ))Rkl(r),

where Rkl(r) solves the radial Schr�odinger equation

R′′
kl(r) +

2

r
R′

kl(r) +

[
k2 − l(l + 1)

r2
− 2m

ℏ2
V (r)

]
Rkl(r) = 0,

the asymptotic solution reads

Rkl ∼
1

kr
sin

(
kr − π

2
l + δl

)
for r →∞,



Partial wave expansion 2

where δl is the l-wave phase shift. Using orthogonality of Legendre polynomials, a similar

decomposition is obtained for the scattering amplitude:

f(θ, k) =
1

2ik

∞∑
l=0

(2l + 1)(ei2δl − 1)Pl(cos θ) =

∞∑
l=0

(2l + 1)fl(k)Pl(cos(θ)),

a simple calculation link the function fl(k) to the phase shift

fl(k) =
ei2δl − 1

2ik
=

1

k cot(δl)− ik
.

We can take advantage of the partial wave expansion, and write the total scattering

cross-section as

σ = 2π

∫ 1

−1

d(cos(θ))|f(θ, k)|2 =
4π

k2

∞∑
l=0

(2l + 1) sin2(δl).



Partial wave expansion 3

As a general rule, for a potential decaying as r−n at large distances, for every l < (n− 3)/2

it holds

δl ∼ k2l+1 for k → 0.

So, for low energy scattering we obtain that the dominant term in the scattering

amplitude is l = 0. Considering Rk0, from trigonometry we have

Rk0 ∼ c1
sin(kr)

kr
+ c2

cos(kr)

r
for r →∞,

with the condition

tan(δ0) =
kc2
c1
.

Remember the limit expression ψ(r) = 1− a/r: neglecting all the contributions except for



Partial wave expansion 4

the s-wave component, we match the expressions and obtain k → 0,

a = lim
k→0

(
− tan(δ0)

k

)
.

Keeping only s-wave scattering, we have

σ =
4π

k2
δ20 = 4πa2.



T-matrix formalism

In principle it is possible to derive the δl directly from the Schr�odinger equation. We show

an alternative formalism that allow to obtain useful simpli�cation with respect to this

approach. Consider the initial state |ϕ⟩, an eigenstate of the free Hamiltonian

Ĥ0 |ϕ⟩ = E |ϕ⟩ ,

and a �nal state |ψ⟩, eigenstate of the total Hamiltonian, in elastic scattering

(Ĥ0 + V̂ ) |ψ⟩ = E |ψ⟩ ,

so it holds, manipulating the expression

(E − Ĥ0) |ψ⟩ = V̂ |ψ⟩+ (E − Ĥ0) |ϕ⟩ .



T-matrix formalism 2

Being the operator Ĝ0 = (E − Ĥ0)
−1 singular, we specify two class of scattered solutions,

|ψ±⟩, by de�ning Ĝ±
0 = (E − Ĥ0 ± iε)−1 for a small, real ε∣∣ψ±〉 = V̂ |ϕ⟩+ Ĝ±

0 V̂
∣∣ψ±〉 .

The scattered states correspond to keeping the outgoing (+) or incoming (-) spherical

waves. The above expression is meant to be evaluated keeping the limit ε→ 0, and it is

frequently called the Lippman-Schwinger equation (in coordinate-free representation). Let

the wavevectors of the states |ϕ⟩ and |ϕ′⟩ be, respectively, k, k′. We can identify the

scattering amplitude

f(k′,k) = − m

4πℏ2
⟨ϕ′| V̂

∣∣ψ+
〉
,

with θ the angle between the wavevectors of plane wave states |ϕ′⟩ (used as a projection)

and |ϕ⟩.



s-wave T-matrix and phase shift in all dimensions

In 3D case:

T0(k) = −
(
4πℏ2

m

)(
1

k cot(δ0(k))− ik

)
.

In 2D case:

T0(k) = −
(
4ℏ2

m

)(
1

cot(δ0(k))− i

)
.

In 1D case:

T0(k) = −
(
2ℏ2

m

)(
k

cot(δ0(k))− i

)
.



Multi-channel scattering



Multi-channel scattering

Consider two alkali atoms, with nuclear spins I1 and I2. Since S = 1/2, we have a total of

4(2I1 + 1)(2I2 + 1) hyper�ne states. The scattering event can couple those states together.

In a general setting, the Hamiltonian of the system, in the relative motion frame, is

Ĥ = Ĥ0 + V̂ ,

where

Ĥ0 =
p̂2

2mr
+ Ĥspin,1 + Ĥspin,2,

let greek letter states denote eigenstates of spin Hamiltonians

Ĥspin |α⟩ = ϵα |α⟩ .

Energy eigenstates are denoted by

Eαβ(kαβ) =
ℏ2k2αβ
2mr

+ ϵα + ϵβ .



Multi-channel scattering 2

We use the asymptotic expansion of the wavefunction

ψ(r) = eikαβ ·r |αβ⟩+
∑
α′β′

fα
′β′

αβ (kαβ ,k
′
α′β′)

e−k′
α′β′r

r
|α′β′⟩ ,

the incoming spin state is called the entrance channel, and the outgoing one exit channel.

Since the channels have di�erent spin energies, the wavenumbers must satisfy

ℏ2k′2α′β′

2mr
=

ℏ2k2αβ
2mr

+ ϵα + ϵβ − ϵα′ − ϵβ′ ,

if this imply that k′2α′β′ ≤ 0 the channel is called closed channel. We de�ne also the

threshold energy

Eth (α
′β′) = ϵα′ + ϵβ′ .



Feshbach resonance

Consider the space of all states to be divided into P , the subspace of open channels, and

Q the subspace of closed channels. Then a generic wavefunction is

|ψ⟩ = |ψP ⟩+ |ψQ⟩ .

Consider P and Q the projectors onto the respective subspaces. Let us multiply the

Schr�odinger equation*

Ĥ |ψ⟩ = E |ψ⟩ ,

by projectors

(E − ĤPP ) |ψP ⟩ = ĤPQ |ψQ⟩

(E − ĤQQ) |ψQ⟩ = ĤQP |ψP ⟩ ,



Feshbach resonance 2

using the usual prescription for iε, solving formally the second equation*

|ψQ⟩ = (E − ĤQQ + iε)−1ĤQP |ψP ⟩ ,

and substituting into the �rst one

(E − ĤPP − Ĥ ′
PP ) |ψP ⟩ = 0,

where

Ĥ ′
PP = ĤPQ(E − ĤQQ + iε)−1ĤQP .

Let

ĤPP = Ĥ0 + V̂1,



Feshbach resonance 3

where V̂1 is the potential in the open channel. We can rewrite the equation* for |ψP ⟩ in a

more physical way

(E − Ĥ0 − V̂ ) |ψP ⟩ = 0,

where we have de�ned the e�ective interaction operator in the subspace of open channels

as

V̂ = V̂1 + V̂2,

and the additional interaction due to the coupling to the closed channel

V̂2 = Ĥ ′
PP ,

Consider the T-matrix equaition T̂ = V̂ + V̂ Ĝ+
0 T̂ , with formal solution

T̂ = V̂ (1− V̂ Ĝ+
0 )

−1 = (1− Ĝ+
0 V̂ )−1V̂ .



Feshbach resonance 4

We can simplify to

T̂ = (E − Ĥ0 + iε)(E − Ĥ0 − V̂ + iε)−1V̂ .

De�ne B̂ = V̂2, Â = E − Ĥ0 − V̂1 + iε. Then

T̂ = (E − Ĥ0 + iε)(Â− B̂)−1V̂ ,

now consider the operator identity

(Â− B̂)−1 = Â−1(1 + B̂(Â− B̂)−1).

We get a modi�ed equation* for the total T-matrix

T̂ = T̂1 + (1− V̂1Ĝ+
0 )

−1V̂2(1− Ĝ+
0 V̂ )−1 (3)

T̂1 = V̂1 + V̂1Ĝ
+
0 T̂ . (4)



Feshbach resonance 5

Let us take matrix elements using the plane wave states |k⟩ and |k′⟩. Suppressing channel
indexes in the T-matrix elements, we write

Tk′k = T1,k′k + ⟨k′| (1− V̂1Ĝ+
0 )

−1V̂2(1− Ĝ+
0 V̂ )−1 |k⟩ ,

one can notice that the state (1− Ĝ+
0 V̂ )−1 |k⟩ is an eigenstate of Ĥ0 + V̂ . We may denonte

this state with
∣∣∣k; V̂ ,+〉

In a similar way, using

⟨k′| (1− V̂1Ĝ+
0 )

−1 = [(1− Ĝ−
0 V̂1)

−1 |k′⟩]†,

we have the right state represented by an incoming wave. These states are no more plane

waves, but they are transformed by the interactions. We can also approximate V̂ inside

the second term with V̂1, thus calculating the �rst order correction in V̂2. Finally, let us go
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to the limit k → 0. We can de�ne aP as the scattering length in the P space, and using

|ψn⟩ eigenstates of ĤQQ, we obtain, from the full expression of V̂2,

V̂2 = Ĥ ′
PP = ĤPQ(E − ĤQQ + iε)−1ĤQP ,

the relation
4πℏ2

m
a =

4πℏ2

m
aP +

∑
n

| ⟨ψn| ĤQP |ψ0⟩ |2

Eth − En
,

the nonresonant terms into the are almost constant with energy, so we incorporate all

terms into consider only the resonant state

4πℏ2

m
a =

4πℏ2

m
abg +

| ⟨ψres| ĤQP |ψ0⟩ |2

Eth − Eres
,

Eth − Eres ≈ (µres − µα − µβ)(B −B0),
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and we recollect the usual formula for Feshbach resonance

a(B) = abg

(
1− ∆B

B −B0

)
.

with

∆B =
m

4πℏ2abg
| ⟨ψres| ĤQP |ψ0⟩ |2

µres − µα − µβ
.
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S. Inouye et. al, Nature 392, 151{154 (1998).



Other additional material



Boltzmann transport equation

Suppose we are at T > TC , and kT >> ∆E, the level spacing of the trap potential.

Suppose also to neglect the mean-�eld potential since kT >> nU0. Then we can use a

semiclassical distribution of states f , obeying the Bolzmann equation*.

∂f

∂t
+ ṙ · ∂f

∂r
+ ṗ · ∂f

∂p
=

(
∂f

∂t

)
source

The source term is given by the interactions, in particular it depends on the scattering

cross section σ = 8πa2, and uses the principle of detailed balance (assuming only s-wave

interaction). By linearizing the equation*, we get damping of the oscillation modes

imposed by the interaction.



Hyperfine and Zeeman Hamiltonian

Ĥspin = AI · J+ CJz +DIz
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