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NONLINEAR DYNAMICS IN GRADED-INDEX FIBERS

We consider light propagation in a parabolic graded-index (GRIN) multimode op-
tical fiber, in the nonlinear regime.

1. Dynamics is effectively described using the (3 + 1)D nonlinear Schrédinger
equation with Kerr nonlinearity and dispersion up to the second order.

2. A variational ansatz is formulated based on Laguerre-Gauss modes with
variable transverse width.

3. By dimensional reduction, we obtain effective one-dimensional equations

for the axial field and width, keeping the axial field as a free function. These
are of the form of generalized Nonpolynomial Schrodinger equation (NPSE).
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Consider the Helmholtz equation

[Vz -+ ,Bz(a))] E(r,w) =0/,

with the choice
B (w) = 5 w*—2W (x, y)—Zg/ E*(r, w)-E(r, 0—0') do’,

W(x,y) o (x* +y°) /] .

EFFECTIVE NONLINEAR SCHRODINGER EQUATION FOR THE LIGHT FIELD

We identify a slowly-varying field @,
- 1~ .
E(r,w) = ECD(r, w) e u + c.c.,

and rewrite the Helmholtz equation into the NLSE
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Comparing this equation with the NLSE of quantum mechanics (Gross-Pitaevskii equation), there is an
exchange of the axial coordinate z with the time coordinate ¢.
With 0<0 — the anomalous dispersion case — we obtain the following adimensional NLSE

1
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A VARIATIONAL APPROACH TO DIMENSIONAL REDUCTION

The previous NLSE can be interpreted as the Euler-Lagrange equation obtained by extremizing the action

functional
S|P] =/Ldt,

L:/dedydz,

with Lagrangian

and Lagrangian density

Z = (@00 - 0a:0") — (10,2 + |9, + [9:0[) - W (x, ) |@f* - Z|@|"

So, there is a strong analogy with the Gross-Pitaevskii theory that describes the mean-field
properties of a Bose-Einstein condensate. In particular, when considering the case of anomalous
dispersion, the Lagrangian density corresponds to the one of an attractive condensate.

In absence of Kerr nonlinearity, the mode structure of the propagation equation is described in terms of
Laguerre-Gauss modes indexed by two integer numbersn =0,1,2,... and m = —n, ..., n, with S = |m|.

Oum(r, 0,2, 1) = Ays(z, 1) Tys(r; o4s(z, 1)) €™

We can assume oy5(z,t) as a variational parameter. The transverse functions are

T, P! r Y r° s
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where n is the principal integer number, m is the angular integer number, and p = (n — S5)/2 is the
radial number.
Special cases are the ansdtze of the form

ro re
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which are the Laguerre-Gauss modes under the condition of a nodeless radial profile. This is
reminiscent of the treatment of vortices in Bose-Einstein condensates, where the condensate density near
the origin follows a power law with an exponent equal to the vorticity. It is a class of Laguerre-Gauss
states in which n = S, or p = 0, indicating a single maximum of the transverse function. This state will
correspond to a simple vortical state with vorticity m.

Tss(r, 0ss(z, 1)) =

QUASI ONE-DIMENSIONAL EFFECTIVE EQUATIONS

Neglecing the derivatives of the transverse width o, the effective Lagrangian is obtained as

o 1 1 1 A[*
PP = iA*9,A - 5 EX Efpg ((? + 02) A% + gPS?) .
with &, =S + 2p + 1, and the effective interaction strength

g 1 Zp: (29)![(2p — 29)1]*(2S + 29)!
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The corresponding Euler-Lagrange equations consist of a (1+1)-dimensional PDE for the axial field A

9p
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20
and an algebraic equation for the variational width o,

Since the Euler-Lagrange equation for the function o is indeed algebraic, we can substitute the value of &
back into the axial field equation, to obtain the NPSE for the Laguerre-Gauss modes,

1+ (3/2)9pS|A|2
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SOLITON-LIKE SOLUTIONS
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(a) Pulse intensity |A|* of the solitonic solutions. (b) Transverse width o.
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Within the stationary ansatz A(z,t) = a(t) exp|—ikz], and with normalized interaction parameter
Yps = |gps|, and a rescaled propagation variable x,s = k/¢,s, we obtain the stationary equation

1 1+ (3/2)g,s|al”
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and determine the temporal shape of the soliton via quadrature. Indeed, by imposing that the soliton
amplitude vanishes for t — +oco, we obtain the implicit relation

1 1 V1= ypsa® — Kps 1 V1 = ypsa® — Kps
t arctan — arctanh :
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Figure 2. Radial profile for two solitonic solutions of the stationary NPSE Eq. (1), corresponding to the m = 1 states with p =0
(red lines) and p = 1 (blue lines). The solid line is the radial shape at the time corresponding to the peak of the soliton, and the
dashed line corresponds to the linear case, which approximates the low-energy regime. r in units of ¢, .

STABILITY OF THE SOLITONS AND CUBIC-QUINTIC APPROACH

We impose the normalization condition for the pulse normalized energy E = f_o; dt|A(z, t)|* therefore
obtaining a relation between the propagation variable and the nonlinearity parameter

_ 2V2 FE———
E = TPS(ZKPS + 1) 1 - KpS-

This relation has solutions for every E < E, that is the threshold energy for the collapse instability of the
optical field. Moreover, this point is the point of union of the stable and unstable branches as marked by
the Vakhitov-Kolokolov (VK) criterion. The VK criterion is a necessary condition for the stability of
the solitons, that is, the solitons are stable only if dE/dk,s > 0, yielding
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Figure 3. Critical pulse energy as a function of the mode numbers.

By integrating the stationary version NPSE, we obtain
d
ZVTV@, V(@) = x50’ — |1 - ppsa

Expanding to sixtic order, we obtain the potential of an equivalent cubic-quintic equation.

1 1
Vs_s(a) = —a® | (kps + 1) — EYpSaz - g}’;sfl] :

Repeating the analysis for the energies, we obtain the cubic and cubic-quintic cases

2V?2 2
V2 Es_s = — arctan(V24/1 + Kps) -

YpS Yps

We can apply the VK criterion to each of the cases.

C | CC NPSE
0E/dkps| > 0 >0 |2 branches
EC +00 ﬂ/ypg 4/(3}/105)

Table 1. Stability with the Vakhitov-Kolokolov criterion and critical energy for different quasi-one dimensional effective
equations.
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