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Introduction to the Blume-Emery-Griffiths (BEG) model

Consider a nearest-neighbor spin-1 Ising model, consisting of spin variables

Si ∈ {0,+1,−1},

with Hamiltonian

H = −J
∑

<i,j>

SiSj −K
∑

<i,j>

S2
i S

2
j +∆

∑
i

S2
i +H

∑
i

Si,

this model is called BEG model. Interesting theoretical features are:

• It describes a tricritical point.

• In certain regimes, it shows a triple point.

• It shows the competition of the coupling K and J in the description of the first-order

transition.

A simplification of the model is called Blume-Capel model, corresponding to K = 0.
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Results from literaure

The BEG was used to study many phenomena in statistical mechanics. Two notable examples

are:

• First-order paramagnetic-ferromagnetic transition in UO2 [Phys. Rev. 141, 517-524 (1966)].

• Lambda transition and phase separation in 3He-4He mixtures [Phys. Rev. A 4, 1071 (1971)].
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Physics of 3He-4He mixtures

[E. H. Graf, D. M. Lee and J. D. Reppy, Phys. Rev. Lett. 19 8, 417 (1967)]
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Lattice gas of the mixture

The spin-1 Ising model is used, in the context of the mixture, to represent a lattice gas, without

vacancies, in which the Helium atoms are:

Si =

{
0 3He

±1 4He

the apparently fictitious double value for the 4He is assigned for being able to write an order

parameter changing its sign. The lattice is a three-dimensional one, with an arbitrary shape. In

fact, the number of nearest neighbors considered in the interaction will be absorbed in the

coupling.
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Definition of thermodynamic variables

In the lattice gas framework, we define the average magnetization

M = N−1
N∑
i=1

⟨Si⟩ ,

the variables corresponding to the number of 3He and 4He atoms

N3 =
N∑
i=1

(
1− S2

i

)
,

N4 =

N∑
i=1

S2
i .

The concentration of 3He is represented by the variable

x =
1

N
⟨N3⟩ .
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Definition of thermodynamic variables

In a translationally symmetric system, it is possible to simplify the averages and take

M = ⟨Si⟩ ,

for the average magnetization, and

x = 1−
〈
S2
i

〉
,

for the density of 3He. These two variables correspond, respectively, to superfluid ordering, and

population imbalance, and are the order parameters of the system. In the context of

magnetism, M is named magnetization, and 1− x is named quadrupole moment.
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Ising model from physical couplings

In order to derive the BEG model, we assume the Hamiltonian as a sum of three terms

H = HS +HI − µ3N3 − µ4N4.

The term HS is the term responsible for superfluidity, written as a ferromagnetic Ising

Hamiltonian in zero field

HS = −J
∑

<i,j>

SiSj ,

with the usual sum over nearest neighbors. The term HI is modeling all the other possible

interaction in nearest neighbors

HI =−K33

∑
⟨i,j⟩

(
1− S2

i

) (
1− S2

j

)
−K44

∑
⟨i,j⟩

S2
i S

2
j

−K34

∑
⟨i,j⟩

[
S2
i

(
1− S2

j

)
+ S2

j

(
1− S2

i

)]
,
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Ising model from physical couplings

where Kij is the interaction between iHe, jHe. One expects all of the Kij to be equal since the

interatomic force is equal for the isotopes, but differences in mass and statistics lead to different

effective interaction. Expanding the products and rearranging we can rewrite the Hamiltonian as

H = −J
∑
⟨i,j⟩

SiSj −K
∑
⟨i,j⟩

S2
i S

2
j +∆

∑
i

S2
i −N (zK33 + µ3) ,

where generalized couplings has been defined as

K = K33 +K44 − 2K34,

and

∆ = µ3 − µ4 + 2z (K33 −K44) ,

where z is the valence, or coordination number of the lattice.
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Mean-field ansatz

We now derive mean-field equations of state. In the original paper they are derived by using a

variational procedure.

Here we propose an alternative, based on a simpler writing of the probability distribution. As

usual in the mean-field approximation, we assume to have independence of the probabilities

related to a single site. Let ρ̄(S), be the joint probability distribution of the configuration S, then

ρ̄(S) =
∏
i

ρi(Si),

moreover, by translational symmetry, ρi = ρj =: ρ ∀ i, j. We can express the single-site probability

as

ρ(S) = q1 δS,1 + q0 δS,0 + q−1 δS,−1,

requiring ∑
i

qi = 1.
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Mean-field ansatz

By computing the averages, we can relate the distribution to the magnetization M and the

quadrupole moment 1− x as follows

q1 − q−1 = M

q1 + q−1 = 1− x,

and solving for {qi}i, we have

q0 = x

q1 =
(1− x) +M

2

q−1 =
(1− x)−M

2
.
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Mean-field ansatz

The mean-field free energy per site, neglecting constant terms, can be obtained by direct

substitution, where we redefine the couplings taking into account the valence number z: zK → K

and zJ → J ,

fMF =− J

2
M2 − K

2
(1− x)2 +∆(1− x)+

1

β

[
x lnx+

(1− x) +M

2
ln

(
(1− x) +M

2

)
+

(1− x)−M

2
ln

(
(1− x)−M

2

)]
.

Minimizing the free energy with respect to M and x we obtain the equations of state

∂fMF

∂M
= −JM +

1

2β

[
ln

(
(1− x) +M

2

)
− ln

(
(1− x)−M

2

)]
= 0.

∂fMF

∂x
= K(1− x)−∆+

1

2β

[
− ln

(
(1− x) +M

2

)
− ln

(
(1− x)−M

2

)
+ 2 lnx

]
= 0.
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Mean-field ansatz

By exponentiating:

e2β(∆−K(1−x)) =
4x2

(1− x)2 −M2
,

(1− x) sinh(βJM)−M cosh(βJM) = 0.

By using simple algebra, the above equations are equivalent to the mean-field equations of Blume,

Emery and Griffiths [Eq.(3.7), (3.8), Phys. Rev. A 4 3, 1071 (1971)]. Once we show they are

equivalent, we can use the same arguments for the Landau theory near the critical point. Those

equations are

1− x =
2 coshβJM

exp[β(∆−K(1− x))] + 2 coshβJM
,

M =
2 sinhβIM

exp[β(∆−K(1− x))] + 2 coshβJM
.
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Phase diagrams

The numerical solution has been carried out using a nonlinear solver based on Newton-Rhapson

metod for the joint system of equations. The results below correspond to K/J = 0.
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Phase diagrams

We can observe that the coefficient M transit from a null value to a finite value in correspondence

to a straight line. This can be easily checked by expanding Eq. (3.10):

1− x = M coth(βJM)

for small M , leading to the superfluid transition temperature

TS

J
= 1− x.

We also observe the peculiar behaviour of the ∆ = 0.4763 line, which is suggesting unphysical

behaviour.
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Computation of first-order transition line

As usually happens with (approx-

imate) equations of state, the de-

scription of the first-order transi-

tion is unphysical. In order to

find the first-order transition lines,

it is necessary to regularize the be-

haviour of the equation of state.

This is routinely done by Maxwell

construction, an example is the

Van der Waals equation. In fact,

we observe, looking at isothermal

lines, that the isothermal com-

pressibility becomes positive.
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Computation of first-order transition line

Imposing negativity of the isother-

mal compressibility, we have that

physically meaningful points on

the phase diagram satisfy(
∂∆

∂x

)
T

> 0

We proceed applying the standard

Maxwell construction and get the

phase diagrams, in which we have

also a spinodal line.
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Computation of first-order transition line
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Case of K/J = 2.88

Setting K/J = 2.88, an interest-

ing feature of the phase diagram is

appearing, namely a triple point,

in which three phases, described

by three different values of x, co-

exist. By using the lever rule, one

can obtain the relative amount of

the phases.
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Power series expansion of the potential

G(M) = Φ−MH

H = − ∂G

∂M

Near the transition point, one can use the equation of state to get the expansion for the

coefficients:

A =
δ

2β
− 1

2
δ,

B =
1

8β

(
δ2 − 1

3
δ3
)
,

C =
1

6β

(
1
2
δ3 − 3

8
δ4 + 3

40
δ5
)
,

with

δ = 1 +
1

2
eβ∆.

Where we can use the solution of the ∆ found before, and draw transition lines.
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Transition lines
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RG considerations for the Blume-Capel model

[J. Cardy, Scaling and Renormalization in Statistical Physics, Cambridge University Press (2015)]
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Conclusions

• The BEG model has been shown to be a valuable tool for describing the rich phase

diagram of the 3He-4He mixture, even at a mean-field level.

• We propopsed an alternative derivation of the mean-field equations, starting from the direct

substitution of the probability distribution, when the original work proposed a variational

approach.

• We solved numerically the mean-field equations, and apply a Maxwell construction to fix

the unphysical features of the mean-field model.

• We pointed out the theoretical relevance of the Blume-Emery-Griffiths, and the

Blume-Capel model, that are applied widely in statistical mechanics.
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Thanks for the attention!
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