
1

Methods for Generalized Rate Distortion Problems
in Sensor Networks

Francesco Lorenzi, February 2022

Abstract—Starting from the results obtained in Gkagkos et
al. [6], where a generalization of Wyner-Ziv source coding
is presented, we study past work to find the most relevant
methods in rate distortion theory to tackle the sensor network
source coding problem. In particular, a single-sensor problem
with side information, in the case of multivariate Gaussian
source and quadratic distortion is defined. It is analyzed using
methods that generalize classical techniques. The concept of
structural properties is described, and they are derived using
properties of jointly Gaussian vectors.

I. INTRODUCTION

The recent availability of inexpensive sensors equipped
with communication interfaces opens the possibility of re-
alizing large-scale sensor networks that may outperform
localized measurement techniques as well as open new
measurement opportunities.

From an Information Theory point of view, it is interesting
to model a sensor network in order to find bounds on the
information that is possible to collect from the group of
sensors, and eventually develop efficient codes that approach
those bounds. The similarity of this scenario to other prob-
lems in Information Theory, as multiple access channel,
source coding of correlated sources, etc. facilitates the usage
of known techniques.

Naturally, many different aspects of a network are to
be included in the design of such system, as network-
level protocols, physical level implementation and channel
estimation. The interplay between those aspects may be
untangled by some reasonable simplifying assumptions, as
the non-cyclicity of the network.

As a starting point, this essay focuses on the results
of Gkagkos et al. [6], which in turn is an application of
theoretical development by Gkagkos and Charlambous [5].
In this works light is shed onto the rate distortion problem in
presence of side information, for the problem of Gaussian
multivariate source coding. Several properties of Gaussian
random vectors are used to establish an achievable lower
bound on the rate, and to characterize the corresponding
optimal test channel. The interesting point of view of struc-
tural properties is adopted.

The essay aims to shed light on the common methodolog-
ical aspects behind rate distortion problems, and in general
the problem of modelling and analyzing an information sys-
tems. As it is often the case, methods developed for specific
problems are applicable by analogy in various scenarios, so
a unifying point of view is useful for the solution of a rich
class of problems.

A. Related work

Seminal work in rate distortion theory is done in Shannon
[7, pp. 47-50], where for the first time the concept of trans-
mission with a fidelity criterion was adopted. In this work,
starting from a transmission problem, the problem of finding
the rate of a source, subject to an average distortion bound
was proposed. The original formulation of rate distortion
theory needs to be interpreted in a multi-stage transmission
scheme: in Dobrushin and Tsybakov [2] transmission in
presence of distortion of the source was discussed, and the
concept of indirect problem was introduced.

A result similar to the source channel separation theorem
was derived in presence of noise. A method for reducing
the distortion function over the stages of the system was
here adopted, effectively reducing the problem to the one
schematized in Fig.1, with RZ information rate of Z and
d(⋅, ⋅) a distance between realizations of X, X̂ .
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Minimize RZ under the constraint E[d(X, X̂)] ≤D
Fig. 1: Reduced rate-distortion problem

In the work of Witsenhausen [9] this very concept of
reduction is elaborated further. Using probabilistic results
from stochastic control [10], a general principle, called
the disconnection principle for conditional expectation is
provided, without proof. Using this principle, the average
distortion across all the system is determined by condition-
ing on the channel variables. This concept is very useful,
especially in the presence of side information.

A thoroughly studied rate distortion problem is the
encoder-decoder scheme in Fig.2, in which side information
can be present at the encoder and the decoder, or only at
the decoder. The idea beyond the use of side information
is that, if we have a variable that is dependent from the
source information, it can improve the source recovery at
the decoder, i.e. lower the rate at the same distortion level,
even if we are not interested in decoding the variable itself.
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Minimize RZ under the constraint E[d(X, X̂)] ≤D
Fig. 2: Side information rate distortion problem (reduced)

The study of the scenario with side information only at
the decoder presents some difficulties, and was carried out
by Wyner and Ziv [11], where a lower bound is found
and connected to other scenarios of side information. In
Wyner [13] the result is extended to continuous variables,
and it is established that, for the Gaussian-quadratic case, the
encoder access to side information does not allow for rate
reduction. The rate distortion coding has many aspects in
common with the channel coding. In Cover and Chiang [1]
the duality is studied, even in the case of side information,
and a unified RDF expression for all the cases of side
information is found. Finally, the duality transformation is
formalized. An interesting concept regarding this is the one
of test channel for a rate distortion scheme: the relationship
between the estimated variable X̂ and the source variable
X is described by a transition probability f(X ∣X̂) between
symbols, and by similarity to channel one it is called test
channel. The problem of finding the RDF is closely related
to the characterization of the test channel, which represents
the argmin in the constrained optimization problem. As
argued [5], the problem of finding the RDF is only a part
of the complete determination of the variables in the coding
scheme, as structural properties, which are properties of the
interplay between variables in the coding scheme, are useful
as well.

Side information is particularly interesting, as a model,
in the case of distributed sensing, as shown in Draper and
Wornell [3]. A sensor in a network has to communicate the
information coming from other sensors to a reference node,
encoding it with measurements the sensor itself performs. If
the goal is to decode separately the measurements of each
sensor, this framework is equivalent to the multiple access
scenario, and the corresponding rate distortion problem can
be addressed starting from the analysis of Slepian-Wolf
achievable rate region [8]. It constitutes a multiple-user
problem. However, if the goal is to decode the information
coming from a single source, and measured through multiple
sensors, the problem simplifies. We focus on the last case,
in particular to the single-step communication between two
network nodes. The result in [6] is the characterization
of RDF and test channel in this scenario, in the case of
Gaussian vector sensing, with Gaussian side information,
with respect to MSE distortion.

B. Essay organization

The essay is organized as follows: in section II we
formalize the problem, and recall some important results

from previous works, as the formalism of conditional mutual
information. The reduction procedure for average distortion
and the disconnection principle are commented. In section
III the assumption of Gaussianity proposed in [6] is com-
mented, along with known properties of jointly Gaussian
vectors. A lower bound on mutual conditional information
is obtained. In section IV the original solution and char-
acterization proposed in [6] and [5] is computed from the
assumptions and conditions of III. In V we conclude and
also we propose some future work.

Finally, section VI is an appendix, where calculations
regarding the quadratic-Gaussian case are given to clarify
some of the calculations in the essay. Moreover, some com-
ments are made on the formalism of conditional expectation.

C. Notation
In this essay we indicate with pX,Y the joint probability

distribution function of the random variables X,Y . RA

is the symbol rate of a specific link which transmit i.i.d.
symbols distributed as the A random variable. A random
variable is denoted by uppercase letter X , its alphabet as
the same letter calligraphic uppercase X, and one of its
element as a lowercase letter x. The number of dimensions
of a random vector X is indicated with nX . For Gaussian
vectors, Q indicates a covariance matrix (Q = QT ), Q ≻ 0
indicates positive definiteness, and Q ⪰ 0 indicates positive
semi-definiteness. If the Gaussian vector is composed of
sub-vectors X and Y , with Gaussian marginals, the total
covariance matrix is decomposed in blocks with this notation

Q =
⎡⎢⎢⎢⎢⎣

QX QXY

QT
XY QY

⎤⎥⎥⎥⎥⎦
(1)

where each matrix is defined as

QUV = cov(U,V ) = E[(U −E[U])(V −E[V ])T ]. (2)

Conditional covariance is defined naturally through condi-
tional expectation. A special notation is used for conditional
independence. X is independent of Y given Z is written as

(X ⊥⊥ Y )∣Z (3)

and it is equivalent to the equation for distributions

pX ∣ZY = pX ∣Z . (4)

If X ←→ Y ←→ X̂ is a Markov chain, then

(X ⊥⊥ X̂)∣Y. (5)

II. FORMALIZATION AND IMPORTANT RESULTS

Let us proceed by successive generalizations: the class of
problems addressed in [6] is broader than the standard prob-
lem of rate distortion theory, so, starting from the standard
problem, we introduce the elements which generalize the
tractation.

A. Classical rate distortion problems
The classical rate distortion problem is formulated in the

following way: let there be a fixed source of i.i.d. symbols
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{Xk}, and let µC and µD an encoder-decoder pair such
that the rate of the code is R. Let d be a distortion measure
between the input and reproduced symbols, often defined as
Hamming distance or euclidean norm (MSE). The question
to be answered is which pairs (R,D) of rate and average
distortion are achievable, which means that there exists a
sequence of encoder-decoder pairs for which, in the limit,
we have rate R and distortion D.

The rate distortion theorem states that

Theorem 1. For a given source X , a pair (R,D), is
achievable if and only if R ≥ α(D), where α is the rate
distortion function associated with the source, and defined
as

α(D) = min
pX∣X̂∈M(D)

I(X̂;X) (6)

where
M(D) = {pX ∣X̂ ∣ E[d(X̂,X)] ≤D} (7)

notice that the rate distortion function is calculated with
respect to a single symbol. Let us recall the classical rate
distortion function for Gaussian variables. Let X ∼ N(0, σ2)

α(D) =
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

1

2
log(σ

2

D
) when 0 ≤D ≤ σ2,

0 when D > σ2.

(8)

in section IV a similar expression will be shown for our
generalized problem.

The first generalization is the presence of side informa-
tion.

B. Side information at the decoder

The usage of side information give rise to an alteration
of the scheme of rate distortion theory. The main results
are given in [11], and then generalized in [13]. Since we
are interested in sensor network application, the scheme
contains a souce pX , which is the magnitude to be sensed
by the network, and the transducer itself, that generates the
measure, as in Fig.3

pX trans. µC µD
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Y

Fig. 3: Sensing and estimation in a single node of a sensor network

A fundamental Markov relation is that Z and Y are
conditionally independent given X , namely

(Z ⊥⊥ Y )∣X. (9)

Consider the problem to find the minimum rate at which we
can transmit X and recover it with an average distortion less
than a fixed quantity. This solved finding the rate distortion
function for the coding scheme. We call such functions α0

and α1, respectively for the open A switch and for the closed
one. The problem of expressing α0, which indicates the
presence of side information only at the decoder has been
solved[11]. Referring to the scheme in Fig.3, with A open,
it holds

α0(D) = min
M0(D)

I(S;Z) − I(Y ;Z) (10)

where the constrain set is the set of all the distribution, or
equivalently the set of all the variables, for which

M0(D) ∶= {Z ∶ (Z ⊥⊥X)∣S,Y ; (11)

∃f ∶ X̂ = f(Y,Z),E[d(X, X̂)] <D} (12)

it is important to notice that the expression (10) can be
written as a conditional mutual information, with condition
on the side information

I(X;Z) − I(Y ;Z) (13)
=H(Z) −H(Z ∣X) −H(Z) +H(Z ∣Y ) = (14)
(∗)= H(Z ∣Y ) −H(Z ∣XY ) = (15)
= I(Z;X ∣Y ) (16)

where (∗) holds because of conditional independence in (9).
As for α1, the solution is less difficult, and summarized

in [11]
α1(D) = min

M1(D)
I(S; X̂ ∣Y ) (17)

where the constrain set is

M1(D) ∶= {X̂ ∶ (X̂ ⊥⊥X)∣S,Y ; (18)

∃f ∶ X̂ = f(Y,Z),E[d(X, X̂)] <D} (19)

Equations (10) and (17) are the starting point for our
discussion on sensor source coding problem.

C. Indirect problem and disconnection principle

When considering the full transmission problem between
sensors, we consider the entropy of the source and the ca-
pacity of the transmission channel. For a single user scheme,
the source-channel separation theorem1 in the presence of
noise holds: transmission is possible if and only if the source
entropy rate (written as the rate distortion function, if in
presence of allowed distortion), is less than the channel
capacity [7]. This theorem, as originally formulated, used
a simple scheme of channel coding for a given source. In
a full transmission situation we could have the sensing part
Cin at the transmitting end which produces a measurement
error, as well as an estimation part Cout at the receiving
end, which produces an estimation error. This formulation
is called the indirect problem. The influence of the input and
output disturbances, can be taken into account by a reduction
method [2] [10]. In [9] the indirect problem of rate distortion
was described as in Fig.4.

1there is no such general result for multi-user problems.
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Fig. 4: Setup of a composite rate distortion problem

In order to compute the rate distortion function, used for
the assessment of feasibility of transmission, we decouple
the variables. Using the Markov chain relation

U ←→ V ←→X ←→ Y ←→W ←→ Z (20)

and conditional independence conditions,

E[d(U,Z)] = (21)
= ∑

U,Z

pU,Z(u, z)d(u, z) (22)

= ∑
U,Z,V,W

pU,Z∣V,W (u, z∣v,w)pV,W (v,w)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

Ch

d(u, z) (23)

= ∑
U,Z,V,W

pV ∣U(v∣u)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

Cin

pZ∣W (z∣w)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

Cout

pU(u)
pV (v)

pV,W (v,w)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

Ch

d(u, z)

(24)

So it is possible to define an amended distortion function
between symbols, independent from the channel

d̂(v,w) ∶= 1

pV (v)
∑
U,Z

pV ∣U(v∣u)pZ∣W (z∣w)pU(u)d(u, z)

(25)
and we recognize in (25) the expression as a conditional
expectation, so

d̂(V,W ) ∶= E[d(U,Z)∣V,W ] (26)

this is related to the original by the tower property

E[d(U,Z)] ∶= E[E [d̂(U,Z)∣V,W ]] (27)

this shows that the indirect problem constraint on distortion
can be reduced to an equivalent direct problem which uses
an amended distortion function.

Using an argument on probability space, it is possible to
generalize the above result, and to state the disconnection
principle. This concepts highlights the fact that the com-
putation of the conditional expectation is not functionally
dependent from the realization of noise in the channel side
[10, sec. IV]. The principle is general, and can be applied
also to side information schemes [10, Fig.6].

III. LOWER BOUND

Let us show some important results for jointly Gaussian
vectors and quadratic distortion

Theorem 2. For a couple of jointly distributed random
vectors (X,Y ), it holds

argmin
g(⋅)

E[∣∣X − g(Y )∣∣2] = E[X ∣Y ] (28)

where minimization is over all possible deterministic func-
tions. In the case of jointly Gaussian distributed vectors

E[X ∣Y ] = E[X] + cov(X,Y )cov(Y,Y )†(Y −E[Y ]) (29)

where the operation denoted by † is pseudoinversion.

The proof is shown for the invertible case in VI.
Let us consider the minimization problem described in

(17). In order to find a lower bound on the conditional
mutual information as in (10), a fundamental variable, the
conditional mean is defined as

X̂cm = E[X ∣X̂Y ] (30)

it follows from theorem (2) that the conditional mean is the
function of (X̂, Y ) that minimizes quadratic distortion,

argmin
g(⋅)

E[∣∣X − g(Y, X̂)∣∣2] = X̂cm (31)

and using (29)

X̂cm = E[X ∣Y ]+cov(X, X̂ ∣Y )cov(X̂, X̂ ∣Y )†(X̂−E[X̂ ∣Y ]).
(32)

Furthermore, being that X̂cm is a deterministic function
of (X̂, Y ), we have the lower bound

I(X; X̂ ∣Y ) = I(X; X̂, f(Y, X̂)∣Y ) = (33)

= I(X; X̂, X̂cm∣Y ) = (34)

= I(X; X̂ ∣X̂cmY ) + I(X; X̂cm∣Y ) (35)

≥ I(X; X̂cm∣Y ) (36)

this can be viewed as an application of data processing
inequality in conditional mutual information [12]. In order
for the equality to hold, i.e. to achieve the lower bound, we
need to have

X̂ = X̂cm a.s. (37)

In the case of an invertible covariance cov(X̂, X̂ ∣Y ), the
above achievement is ensured by the following conditions

E[X ∣Y ] = E[X̂ ∣Y ] (38)

and
cov(X, X̂ ∣Y )cov(X̂, X̂ ∣Y )−1 = I (39)

as follows by inspection on equation (32).

IV. STRUCTURAL PROPERTIES

In general, as argued in [5], when finding a RDF, it is
often the case that the minimization problem is tacked using
mathematical optimization techniques. The concept of struc-
tural properties, which are properties of a test channel, may
be useful and interesting as the RDF itself, as they describe
the nature of the variables involved in the test channel. In
this case the formulation of structural properties is even more
interesting, as the Gaussian multivariate source X is partially
observable, and side information Y is available.

A. Switch A closed

Starting from the lower bound formulated in the previous
section, we want to characterize the expression of the test
channel realization which achieves the RDF α1, in the case
of side information at the encoder and decoder. By finding a
suitable parametric expression of the estimation X̂ , we are
able to use the conditions (38) and (39) that allows us to
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achieve the bound given in (36). Moreover, the constrained
optimization is achieved, as the optimization space include
the parametrized expression of the estimator, as discussed
below.

All the following use results on Gaussian vectors that are
recalled in VI. Let us consider, using the same argument as
classical rate distortion theory, that the variables that achieve
the bound,

(X,S,Y, X̂) are jointly Gaussian. (40)

The marginal distribution of (X,Y,S) is fixed as this is
assumed to be the generalized source distribution. In order to
characterize the test channel, we need to describe X̂ . In fact,
X̂ depends only on S,Y , as X is not directly observable.
By property (40), the conditional probability pX̂ ∣SY , has
expected value which is linear in S,Y , and a covariance
which do not depend from these variables. So it is possible
to write a parametrized version of X̂ as follows

X̂ =HS +GY +W (41)

where

H ∈ Rnx,ns (42)
G ∈ Rnx,ny (43)

the variable W stands for independent white noise, and has
a covariance matrix

QW ⪰ 0 (44)

in order to find the RDF, we must know that such
parametrized solution respect the distortion constraint. How-
ever, by applying conditions (38) (39), we will have that
X̂cm = X̂ a.s., so by the property (31), the distribution
induced by such variable gives an average distortion less
than every other choice of estimator. So our proposed
solution satisfy the constraint.

Let us find the parameters (H,G,QW ). Starting from
(38), and writing the left side

E[X ∣Y ] = (45)

= cov(X,X)cov(Y,Y )−1Y = (46)

= QXY Q
−1
Y Y (47)

(48)

and the right side

E[X̂ ∣Y ] = (49)

= cov(X̂, Y )cov(Y,Y )−1Y = (50)

= cov(HS +GY +W,Y )Q−1Y Y = (51)

= (HQSY +GQY )Q−1Y Y = (52)

=HQSY Q
−1
Y Y +GY (53)

using independence of noise. By equating the two sides, G
is obtained

G = (QXY −HQSY )Q−1Y (54)

Using condition (39), starting from the first term of the left

side and remembering (39)

cov(X, X̂ ∣Y ) = (55)

= E[(X −E[X ∣Y ])(X̂ −E[X ∣Y ])T ] = (56)

= E[(X −E[X ∣Y ])(X̂)T ] = (57)

= E[(X −E[X ∣Y ])(HS +GY +W )T ] = (58)

= QSXHT +QXY G
T− (59)

−QXY Q
−1
Y QT

SY H
T −QXY G

T = (60)

= QXS∣Y H
T (61)

(62)

the last equation is justified as

QXS∣Y = cov(X,S∣Y ) = (63)

= E[(X −E[X ∣Y ])(S −E[S∣Y ])T ] = (64)

= E[(X −QXY Q
−1
Y Y )(S −QSY Q

−1
Y Y )T ] = (65)

= QSX −QXY Q
−1
Y QT

SY (66)
(67)

the second term of the left side is

cov(X̂, X̂ ∣Y )−1 = (68)

= E[(X̂ −E[X ∣Y ])(X̂ −E[X ∣Y ])T ]−1 = (69)

= (HQSH
T +HQSY G

T+ (70)

GQSY H
T +GQY G

T +QW )−1 = (71)

= (HQSH
T −HQSY Q

−1
Y QT

SY H
T +QW )−1 = (72)

= (HQS∣Y H
T +QW )−1 (73)

Imposing the product to be the identity matrix we charac-
terize the noise covariance

HQS∣Y H
T +QW = QXS∣Y H

T (74)

Ô⇒ QW = QXS∣Y H
T −HQS∣Y H

T . (75)

When the above conditions hold, we have X̂ = X̂cm a.s., so
it holds

X̂ = E[X ∣X̂Y ] (76)

Ô⇒ E[X ∣X̂Y ] = E[X ∣X̂] (77)
Ô⇒ pX ∣X̂Y = pX ∣X̂ (78)

the last implication is valid as for jointly Gaussian vectors
uncorrelation implies independence.

By the Markov chain relations we have (X ⊥⊥ X̂)∣Y , and
(X ⊥⊥ X̂)∣SY so it is possible to complete the characteriza-
tion writing

pX̂ ∣SY X = pX̂ ∣SY (79)

The equations from (76) to (79), and their implications,
consitute the structural properties. We can now characterize
the RDF: let us introduce for simplicity the matrix Σ, defined
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as

Σ = cov(X,X ∣X̂, Y ) = (80)

= E[(X −E[X ∣X̂, Y )])(X −E[X ∣X̂, Y )])T ] = (81)

= E[(X − X̂)(X − X̂)T ] (82)
= QX ∣Y −HQXS∣Y (83)

it is possible to write

HQT
XS∣Y = QX ∣Y −Σ. (84)

and also the average distortion for a particular choice of X̂
can be computed as

D = tr(Σ). (85)

The corresponding RDF can be written computing the
mutual entropy inside the framework of the structural prop-
erties

α1(D) = inf
tr(Σ)≤D

[1
2
log(

det(QX̂ ∣Y )
det(QW )

)] (86)

with QX̂ ∣Y that can be expressed as

QX̂ ∣Y =HQS∣Y H
T +QW = QX ∣Y −Σ ⪰ 0 (87)

As shown in [6, remarks III.1, 2] this result is justified as it
is possible to derive less general well known results, as the
one of Wyner [13], with fully observable source.

B. Switch A open

Finally, we need to extend the structural properties to the
case of side information only at the decoder. For jointly
Gaussian variables, we know from [13] that α0(D) =
α1(D). Nonetheless, the properties are formulated in a
different manner, as it is different the encoding scheme. Let
us assume the following structure, using G,H as before

X̂ = GY +Z (88)
Z =HS +W (89)

interesting considerations are made in [13, remarks at page
65], and [12, equation 3.11], in which is is stated that, if
S ←→ Y,Z ←→ X̂ is a Markov chain, as in our case, then

I(S;Z ∣Y ) = I(S; X̂ ∣Y ) ⇐⇒ I(S;Z ∣X̂Y ) (90)

being that X̂ = f(Y,Z), the condition on the left is satisfied,
and we can conclude α0(D) = α1(D). In Fig.5 the scheme
is drawn.

pX trans. µC f
X

RX

S

RS

Z

RZ

X̂ = f(Z,Y )
RX

Y

Fig. 5: Structure for characterization of α0(D)

The structural properties for the test channel follow from
the properties derived in the case of switch A closed, using
the additional properties

QX̂ ∣Y = QZ∣Y (91)

QS∣ZY = QS∣X̂Y (92)

V. CONCLUSIONS

In this essay, we studied different problems related to rate
distortion theory and its applications in sensor networks. The
multi-user framework was not used, as the focus was on
a single communication problem in case of side informa-
tion. Starting from well-known results for side information
schemes, we computed the characterization of a particular
test channel in the jointly Gaussian vector source. Being that
the source is partially observable, we have shown methods
for reducing generic indirect rate distortion problems to
direct ones. Using several properties of Gaussian variables,
a lower bound on conditional mutual information, valid for
both cases of information at the encoder and the decoder,
and only at the decoder, was calculated. Finally, utilizing
achievability conditions and parametric expression of the
estimation variable, the structural properties of such test
channel were derived. In all the derivation we employed
algebraic manipulations on Gaussian expectation and covari-
ance matrices.

Further work may involve the proof of the disconnection
principle [10], and the exploration of its implications in
the scenario of sensor networks, and general problems. The
full-fledged network information theory problem for sensor
network remains untouched and may be a topic for further
investigations. Structural properties can be used to obtain
metrics on different realistic scenarios. Lastly, from the
formal point of view, it may be interesting to refine the
formalism using conditions over sub σ-algebras: that may
give additional insight on the passages of characterization
of the test channel.

VI. APPENDIX

The results shown in theorem (2) are well known results
for random vectors. These results are important and well-
known, but are also non trivial, so in this section some
intuition about the proofs of those properties are given in
A and B. In part C we comment on the formalism of
conditioning over a sub σ-algebra, as done in Witsenhausen
[9]. In the following, suppose X and Y are respectively a n,
and m dimensional absolutely continuous random vectors.

A. Optimality of conditional expectation

Let us start from the first part of theorem (2). The tower
property for conditional expectation asserts that

E[∣∣X − g(Y )∣∣2] = E[E[∣∣X − g(Y )∣∣2∣Y ]] (93)
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we aim to minimize the left side of (93), by minimizing the
conditional expectation for every Y = y. Using the definition
of conditional expectation, with fX ∣Y conditional probability

E[∣∣X − g(Y )∣∣2∣Y = y] = (94)

= ∫
Rn

dxfX ∣Y (x∣y)∣∣x − g(y)∣∣2 (95)

= ∫
Rn

dxfX ∣Y (x∣y)(xTx − xT g(y)− (96)

− g(y)Tx + g(y)T g(y)). (97)

The minimization problem is in functional sense, but the
expression to be minimized allows us to do a pointwise
optimization, i.e. find the optimal values for g = g(y), as
the expression which involves g contains only algebraic op-
erations2. By pointwise derivation we obtain the optimality
condition on the gradient.

∇g (E[∣∣X − g(Y )∣∣2∣Y = y]) = (98)

= ∫
Rn

dxfX ∣Y (x∣y) (−2x + 2g) = (99)

= −2E[X ∣Y = y] + 2g = 0. (100)

Since the functional to be minimized is convex, we conclude
that the minimum is

g(y) = E[X ∣Y = y] (101)

B. Conditional expectation in Gaussian case

Let us assume that the variables X,Y , as defined before,
are also jointly Gaussian. Assume the Gaussian vector Z to
be

Z = ( X
Y
) ∼ N(0,Q) (102)

and the covariance matrix is

Q =
⎡⎢⎢⎢⎢⎣

QX QXY

QT
XY QY

⎤⎥⎥⎥⎥⎦
(103)

To compute the conditional expectation we compute first
the conditional probability pX ∣Y . It turns out that such dis-
tribution is Gaussian, and its expectation is the conditional
expectation. We assume all the covariance matrices to be
nonsingular for simplicity. Assuming ξ to be a normalization
constant

pX ∣Y (x∣y) =
pXY (x, y)
pY (y)

= (104)

= ξ exp [−1
2
(ZTQ−1Z − Y TQ−1Y Y )] . (105)

Recall now a simple algebraic result for the inverse of a
block matrix

Q−1 =
⎡⎢⎢⎢⎢⎣

QX QXY

QT
XY QY

⎤⎥⎥⎥⎥⎦

−1

=∶
⎡⎢⎢⎢⎢⎣

RX RXY

RT
XY RY

⎤⎥⎥⎥⎥⎦
(106)

2The problem can be addressed also using Gateaux derivative, or,
equivalently, using Euler-Lagrange equations: all the methods yield similar
computations.

with

RX = (QX −QXY Q
−1
Y QT

XY )−1 (107)

RXY = −(QX −QXY Q
−1
Y QT

XY )−1QXY Q
−1
Y (108)

RY = (QY −QT
XY Q

−1
X QXY )−1 (109)

from this result it is simple to deduce

R−1X RXY = −QXY Q
−1
Y (110)

Starting from (105), it is possible to compute a new covari-
ance matrix using a square completion argument

pX ∣Y (x∣y) = (111)

= ξ′ exp [−1
2
((x −QXY Q

−1
Y y)TRX(x −QXY Q

−1
Y y))]

(112)

In conclusion, the conditioned variable has the following
properties

E[X ∣Y ] = QXY Q
−1
Y Y (113)

E[X2∣Y ] = QX ∣Y = QX −QXY Q
−1
Y QT

XY (114)

From this result, with some algebraic passages we can also
obtain the property, for a triple of jointly Gaussian vectors
(X,Y,Z)

cov(X,Y ∣Z) = QXY ∣Z = QXY −QXZQ
−1
Z QT

Y Z (115)

Finally, noticing that the conditional covariance is constant
and do not depend from the conditioning variable, i.e. it is a
degenerate variable, it is possible to write, in the Gaussian
case

cov(X,Y ∣Z) = (116)

= E[(X −E[X ∣Z])(Y −E[Y ∣Z])T ∣Z] = (117)

= E[(X −E[X ∣Z])(Y −E[Y ∣Z])T ]. (118)

C. Conditional expectation with respect to sub σ-algebras

Some of the cited works in the essay use the formalism
of conditioning with respect to a sub σ-algebra [10], [12].
The two representations are equivalent, given that any con-
ditioning random variable Y is a measurable function on a
probability space (Ω,F , P ), and the corresponding sub σ-
algebra, which will be a subset of F , is determined by all
of the sets which corresponds to any particular realization of
the variable Y . Inside any of these sets, any other variable
X(ω) will have a particular distribution, and so a particular
entropy for example. The general knowledge of Y induces a
knowledge on the probability space, that is used to compute
the value of other variables.

In Wyner [12] the conditioning is always written with
respect to a sub σ-algebra: for example P (A∣B) is the
probability of event A given the sub σ-algebra B, and
P (A∣B) is a B-measurable function, i.e. a random variable
over the probability space (Ω,B, P ). Conditional entropy
is defined in the discrete case passing through the random
variable H(X ∣Y )

H(X ∣Y ) = − ∑
x∈X

P (X = x∣Y ) log(P (X = x∣Y )) (119)
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which is a Y -measurable function. Classical conditional
entropy is obtained as an expectation, as it is well-known

H(X ∣Y ) = E[H(X ∣Y )]. (120)

In the same way we can define also conditional mutual
information [12], which is the main instrument for side
information source coding.

From an operative point of view there is a compromise
in the usage of this formalism: the augmented mathematical
abstraction may be not justified by the results that it allows
for. Mathematical details can be found in Kallenberg [4],
and it may be interesting to explore further the notation
possibilities of sub σ-algebras in application to Information
Theory.
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