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Introduction

We consider an ultracold Bose gas trapped in a quasi one-dimensional setting.
1. By using the three-dimensional Gross-Pitaevskii equation, we numerically

obtain the dynamics of the collision of a matter-wave soliton with a narrow
potential barrier.

2. We determine how the transmission coefficient depends on the soliton
impact velocity and the barrier height [3-5].

3. The regions of parameters where there is the collapse of the bright soliton
induced by the collision have been obtained.

4. We compare the three-dimensional results with the ones obtained by three

different one-dimensional nonlinear Schrödinger equations [2].

𝑖ℏ
𝜕

𝜕𝑡
𝜓 =

[
− ℏ2

2𝑚
∇2 +𝑈 + 𝑔(𝑁 − 1) |𝜓 |2

]
𝜓 . (1)

𝑈 (𝑥,𝑦, 𝑧) = 1
2
𝑚𝜔2

⊥(𝑦2 + 𝑧2) +𝑉 (𝑥 ; 𝑏), (2)
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Dynamics at the collision

When a one-dimensional soliton impinge on a narrow barrier, the transmission coefficient 𝑇 is expected
to be a discontinuous function of 𝑣 , the impinging velocity, and 𝑏, the barrier energy, for sufficiently
low values of the parameters. Moreover, for high values of velocity and barrier, collapse can be

induced by the collision event [3]. This can be related to the transverse width reducing to zero.
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(a) Axial density
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(b) Transverse width

Dimensional reduction strategies for the Gross-Pitaevskii equation

The Gross-Pitaevskii Lagrangian in 3D is

L =

∫
𝑑3r𝜓 ∗
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𝑖ℏ

𝜕

𝜕𝑡
+ ℏ2
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2
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]
𝜓, (4)

with

𝑔 =
4𝜋ℏ2𝑎𝑠
𝑚

< 0. (5)

Has stable soliton-like solutions for 𝛾 = (𝑁 − 1) |𝑎𝑠 |/𝑙⊥ < 𝛾𝑐 ≈ 0.67. It is possible to assume the
separation ansatz

𝜓 (r, 𝑡) = 𝑓 (𝑥, 𝑡)𝜙 (𝑦, 𝑧), (6)

where
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]
. (7)

A better approach is to assume a variable transverse width

𝜙 (𝑦, 𝑧, 𝜎 (𝑥, 𝑡)) = 1
√
𝜋𝜎 (𝑥, 𝑡)

exp
[
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]
(8)

By considering the corresponding Euler-Lagrange equations, that are computed for 𝑓 and 𝜎 , we obtain
a set of coupled PDE and ODE.

One-dimensional effective equations

The simplest dimensional reduction from ansatz (6)
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By using instead ansatz (8)

NPSE+:
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and approximating 𝜕𝜎
𝜕𝑥

≈ 0,

NPSE:
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Soliton-like solutions

(a) Solitonic solution (b) Zoomed in soliton peaks

(a) Transverse width (b) Chemical potential

Numerical methods

We use a split-step Fourier method with Strang splitting, that naturally implements periodic
boundaries conditions. We assume the field to be localized away from the boundary in order to neglect
this problem. The time step in both setups is chosen to be ℎ𝑡 = 0.01. These parameters have been proven
to give a total truncation error in the 𝐿∞ norm of the order of 10−4. The ground state solutions are
computed using an imaginary-time propagation method. The natural units for the problem are:
energy −→ ℏ𝜔⊥, time → 𝜔−1

⊥ , length −→ 𝑙⊥.
1. 1D simulations: length of 𝐿 = 40, with a grid of 𝑁 = 512 points.
2. 3D simulations: lengths of (𝐿𝑥, 𝐿𝑦, 𝐿𝑧) = (40, 10, 10), grid of (𝑁𝑥, 𝑁𝑦, 𝑁𝑧) = (512, 40, 40) points.
The sistem of coupled PDE and ODE in the NPSE+ is solved iteratively by means of a collocation
method for the boundary value problem for 𝜎 .
Collapse threshold is set to a probability per point of 0.3. In the NPSE case, collapse is given by the
consistency conditions

1 + 2𝑎𝑠 (𝑁 − 1) |𝑓 |2 < 0. (12)

Results
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Figure 4. Transmission coefficient. 𝑣 is in units of
√︁
ℏ𝜔⊥/𝑚, 𝑏 is in units of ℏ𝜔⊥.

The three-dimensional findings indicate that the full dynamics features
1. Discontinuity of 𝑇 in the regime of small 𝑣 and 𝑏.
2. Barrier-induced collapse for high 𝑣 and 𝑏, with a non-trivial dependence on the parameters.
By using the NPSE and NPSE+, we noticed
1. The NPSE indicates collapse for smaller values of 𝑣 and 𝑏. Therefore, it cannot reliably predict 𝑇 in

these regimes.
2. The NPSE+ does not show collapse in the region we investigated, but it consistently gives accurate

values of the transverse width in the non-collapsing region.

(a) 𝑣 = 0.6 (b) 𝑣 = 0.8

Summary

We investigated how the choice of dimensional reduction impacts the description of some features of
the process, namely the transmission coefficient and the onset of barrier-induced collapse, also using
the familiar one-dimensional Gross-Pitaevskii. We first reviewed the ground state properties given by
all the schemes, highlighting the role of the variational transverse width. Then we compared the
scattering properties: our results show that by using the NPSE in a regime of high barrier energy and
high velocity it fails to describe the 3D dynamics due to the vanishing of the transverse width of the
solution. Our main result is that by adopting a slight modification of the NPSE, by using the true
variational solution with the NPSE ansatz, the effective equation has a good agreement with the
3D-GPE transmission coefficient in the non-collapsing region, but fails to accurately describe the
collapse event.
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